Abstract-This paper presents a new type of FFT hardware architectures called serial commutator (SC) FFT. The SC FFT is characterized by the use of circuits for bit-dimension permutation of serial data. The proposed architectures are based on the observation that in the radix-2 FFT algorithm only half of the samples at each stage must be rotated. This fact, together with a proper data management makes it possible to allocate rotations only every other clock cycle. This allows for simplifying the rotator, halving the complexity with respect to conventional serial FFT architectures. Likewise, the proposed approach halves the number of adders in the butterflies with respect to previous architectures. As a result, the proposed architectures use the minimum number of adders, rotators and memory that are necessary for a pipelined FFT of serial data, with 100% utilization ratio.
This paper presents a high-throughput FFT processor for IEEE 802.15.3c (WPANs) standard. To meet the throughput requirement of 2.59 Giga-samples/s, radix-16 FFT algorithm is adopted and reformulated to an efficient form so that the required number of butterfly stages is reduced. Specifically, the radix-16 butterfly processing element consists of two cascaded parallel/pipelined radix-4 butterfly units. It facilitates low-complexity realization of radix-16 butterfly operation and high operation speed due to its optimized pipelined structure. Besides, a new three-stage multiplier for twiddle factor multiplication is also proposed, which has lower area and power consumption than conventional complex multipliers. Moreover, a conflict-free multibank memory addressing scheme is devised to support up to 16-way parallel and normal-order data input/output. Without needing to reorder the input/output data, this scheme helps a high-throughput design result. Equipped with those new performance-boosting techniques, overall the proposed radix-16 FFT processor is area-efficient with high data processing rate and hardware utilization efficiency. The EDA synthesis results show that whole FFT processor area is mm , and the power consumption is 42 mW with 90 nm process. The SQNR performance is 57 dB with 12-bit wordlength implementation.Index Terms-Fast Fourier transform (FFT), non-conflict memory addressing scheme, OFDM, radix-16 FFT, WPANs.
In this paper we present new feedforward FFT hardware architectures based on rotator allocation. The rotator allocation approach consists in distributing the rotations of the FFT in such a way that the number of edges in the FFT that need rotators and the complexity of the rotators are reduced. Radix-2 and radix-2 k feedforward architectures based on rotator allocation are presented in this paper. Experimental results show that the proposed architectures reduce the hardware cost significantly with respect to previous FFT architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.