Stereoblock poly(lactic acid) consisting of D- and L-lactate stereosequences can be successfully synthesized by solid-state polycondensation of a 1:1 mixture of poly(L-lactic acid) and poly(D-lactic acid). In the first step, melt-polycondensation of L- and D-lactic acids is conducted to synthesize poly(L-lactic acid) and poly(D-lactic acid) with a medium-molecular-weight, respectively. In the next step, these poly(L-lactic acid) and poly(D-lactic acid) are melt-blended in 1:1 ratio to allow formation of their stereocomplex. In the last step, this melt-blend is subjected to solid-state polycondensation at temperature where the dehydrative condensation is allowed to promote chain extension in the amorphous phase with the stereocomplex crystals preserved. Finally, stereoblock poly(lactic acid) having high-molecular-weight is obtained. The stereoblock poly(lactic acid) synthesized by this way shows a higher melting temperature in consequence of the controlled block lengths and the resulting higher-molecular-weight. The product characterization as well as the optimization of the polymerization conditions is described. Changes in M(w) of stereoblock poly(lactic acid) (sb-PLA) as a function of the reaction time.
Cover: The cover depicts the novel synthetic scheme for the stereoblock poly(lactic acid) (sb-PLA) by solid-state polycondensation of a stereocomplexed mixture of poly(L-lactic acid) (PLLA), and poly(D-lactic acid) (PDLA), having medium molecular weight. First, meltpolycondensation of L-and D-lactic acids is conducted to obtain the PLLA and PDLA, respectively. In the second step, these polymers are melt-blended to form the stereocomplex. Then, the solid-state polycondensation of the melt-blend affords the sb-PLA with high molecular weight and high melting temperature without formation of single polymer crystals of PLLA or PDLA.Further details can be found in the Full Paper by K. Fukushima, Y. Furuhashi, K. Sogo, S. Miura, and Y. Kimura* on page 21.
D-Lactic acid was synthesized by the fermentation of rice starch using microorganisms. Two species: Lactobacillus delbrueckii and Sporolactobacillus inulinus were found to be active in producing D-lactic acid of high optical purity after an intensive screening test for D-lactic acid bacteria using glucose as substrate. Rice powder used as the starch source was hydrolyzed with a combination of enzymes: alpha-amylase, beta-amylase, and pullulanase to obtain rice saccharificate consisting of maltose as the main component. Its average gross yield was 82.5%. Of the discovered D-lactic acid bacteria, only Lactobacillus delbrueckii could ferment both maltose and the rice saccharificate. After optimizing the fermentation of the rice saccharificate using this bacterium, pilot scale fermentation was conducted to convert the rice saccharificate into D-lactic acid with a D-content higher than 97.5% in a yield of 70%. With this yield, the total yield of D-lactic acid from brown rice was estimated to be 47%, which is almost equal to the L-lactic acid yield from corn. The efficient synthesis of D-lactic acid can open a way to the large scale application of high-melting poly(lactic acid) that is a stereocomplex of poly(L-lactide) and poly(D-lactide). Schematic representation of the production of D-lactic acid starting from brown rice as described here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.