Background: At present, the epidemic of the novel coronavirus disease 2019 (COVID-19) has quickly engulfed the world. Inflammatory cytokines are associated with the severity and outcomes of patients with COVID-19. However, the prognostic value of proinflammatory factors in cancer patients with COVID-19 are unknown. Methods: A multi-center, retrospective, cross-sectional study, based on five designated tertiary hospitals for the treatment of COVID-19 in Hubei Province, China. 112 cancer patients with COVID-19, and 105 COVID-19 patients without cancer were enrolled in the study between January 1st, 2020 and April 30th, 2020. The risk assessment of proinflammatory factors for disease severity and clinical adverse outcomes was identified by univariable and multivariable logistic regression models. Results: Of the 112 cancer patients with COVID-19, 40 (35.7%) patients were in critical condition and 18 (16.1%) patients died unfortunately. Univariate and multivariate analysis demonstrated that hemoglobin level and pro-inflammatory neutrophils and C-reactive protein (CRP), can be used as independent factors affecting the severity of COVID-19; Meanwhile, pro-inflammatory neutrophils and CRP can be used as an independent influencing factor for adverse clinical outcome of death. Moreover, the dynamic changes of neutrophils and CRP were also presented, and compared with COVID-19 patients without cancer, cancer patients with COVID-19 showed higher neutrophil counts and CRP levels.
Platelet separation and purification are required in many applications including in the detection and treatment of hemorrhagic and thrombotic diseases, in addition to transfusions and in medical research. In this study, platelet separation was evaluated using a novel zigzag microchannel fluidic device while leveraging a dielectrophoresis (DEP) electric field using the COMSOL multiphysics software package and additional experimentation. The zigzag-shaped microchannel was superior to straight channel devices for cell separation because the sharp corners reduced the required horizontal distance needed for separation and also contributed to an asymmetric DEP electric field. A perfect linear relationship was observed between the separation distance and the corner angles. A quadratic relationship (R2 = 0.99) was observed between the driving voltage and the width and the lengths of the channel, allowing for optimization of these properties. In addition, the voltage was inversely proportional to the channel width and proportional to the channel length. An optimal velocity ratio of 1:4 was identified for the velocities of the two device inlets. The proposed device was fabricated using laser engraving and lithography with optimized structures including a 0.5 mm channel width, a 120° corner angle, a 0.3 mm channel depth, and a 17 mm channel length. A separation efficiency of 99.4% was achieved using a voltage of 20 V and a velocity ratio of 1:4. The easy fabrication, lower required voltage, label-free detection, high efficiency, and environmental friendliness of this device make it suitable for point-of-care medicine and biological applications. Moreover, it can be used for the separation of other types of compounds including lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.