Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.ne of the prominent characteristics of rapidly growing tumor cells is their capacity to sustain high rates of glycolysis for ATP generation irrespective of oxygen availability, termed the Warburg effect (1). Recent studies have shown that cancer cells shift metabolic pathways to facilitate the uptake and incorporation of abundant nutrients, such as glucose and glutamine (2, 3), into cell building blocks, such as nucleotides, amino acids, and lipids, that are essential for highly proliferating cells (4). This seems to be a universal characteristic of highly malignant tumors (5), independent of their carcinogenetic origin (6). Understanding how cancer cells reprogram metabolism can stimulate the development of new approaches in cancer therapy.Although there is now substantial information about how these pathways are regulated, most existing studies on cancer metabolism have used in vitro cell lines. In addition to genetic and epigenetic alterations, altered tumor microenvironment (e.g., blood flow, oxygen and nutrient supply, pH distribution, redox state, and inflammation) plays a profound role in modulating tumor cell metabolism (7-9). Therefore, a systematic characterization of in vivo metabolic pathways was deemed necessary to understand how metabolic phenotypes are regulated in intact human tumors.Here we applied multiomics-based approaches [i.e., metabolomics, target sequencing of cancer-related genes, transcriptomics, and methylated DNA immunoprecipitation sequencing (MeDIPseq)] to paired normal and tumor tissues obtained from 275 patients with colorectal cancer (CRC) and uncovered the details of which factors contributed, and when they contributed, to metabolic reprogramming in colorectal cancer. The results were confirmed by analysis of colorectal tissue from Apc mutant mice and cancer cell lines.