Abstract-Many algorithms have been developed to identify important nodes in a complex network, including various centrality metrics and PageRank, but most fail to consider the dynamic nature of the network. They therefore suffer from recency bias and fail to recognize important new nodes that have not had as much time to accumulate links as their older counterparts. This paper describes the Effective Contagion Matrix (ECM), a solution to address recency bias in the analysis of dynamic complex networks. The idea of ECM is to explicitly consider the temporal order of links and chains of links connecting to a node with some temporal decay factors. We tested ECM with three large real world citation networks on the task of predicting papers' future importance. We compared ECM's performance with two static metrics, degree-centrality and PageRank, and two time-aware metrics, age-based PageRank and CiteRank. We show that ECM is more appropriate for predicting future citations and PageRank scores with regard to new citations. We also describe a procedure to estimate ECM's parameters from the data. Combining all five scores into a ν-SVR regression model of future citations improves the predictive performance further.
Location-based services allow users to perform geospatial recording actions, which facilitates the mining of the moving activities of human beings. This article proposes to recommend time-sensitive trip routes consisting of a sequence of locations with associated timestamps based on knowledge extracted from largescale timestamped location sequence data (e.g., check-ins and GPS traces). We argue that a good route should consider (a) the popularity of places, (b) the visiting order of places, (c) the proper visiting time of each place, and (d) the proper transit time from one place to another. By devising a statistical model, we integrate these four factors into a route goodness function that aims to measure the quality of a route. Equipped with the route goodness, we recommend time-sensitive routes for two scenarios. The first is about constructing the route based on the user-specified source location with the starting time. The second is about composing the route between the specified source location and the destination location given a starting time. To handle these queries, we propose a search method, Guidance Search, which consists of a novel heuristic satisfaction function that guides the search toward the destination location and a backward checking mechanism to boost the effectiveness of the constructed route. Experiments on the Gowalla check-in datasets demonstrate the effectiveness of our model on detecting real routes and performing cloze test of routes, comparing with other baseline methods. We also develop a system TripRouter as a real-time demo platform.
Given two homogeneous rating matrices with some overlapped users/items whose mappings are unknown, this paper aims at answering two questions. First, can we identify the unknown mapping between the users and/or items? Second, can we further utilize the identified mappings to improve the quality of recommendation in either domain? Our solution integrates a latent space matching procedure and a refining process based on the optimization of prediction to identify the matching. Then, we further design a transfer-based method to improve the recommendation performance. Using both synthetic and real data, we have done extensive experiments given different real life scenarios to verify the effectiveness of our models. The code and other materials are available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.