Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β.
Our previous study demonstrated that the expression of sodium channel voltage-gated beta 2 (ScN2B) increased with aging in senescence-accelerated mouse prone 8 (SAMP8) mice, and was identified to be associated with a decline in learning and memory, while the underlying mechanism is unclear. In the present study, multiple differentially expressed miRNAs, which may be involved in the process of aging by regulating target genes, were identified in the prefrontal cortex and hippocampus of SAMP8 mice though miRNA microarray analysis. Using bioinformatics prediction, ScN2B was identified to be one of the potential target genes of miR-449a, which was downregulated in the hippocampus. Previous studies demonstrated that miR-449a is involved in the occurrence and progression of aging by regulating a variety of target genes. Therefore, it was hypothesized that miR-449a may be involved in the process of brain aging by targeting ScN2B. To verify this hypothesis, the following experiments were conducted: A reverse transcription-quantitative polymerase chain reaction assay revealed that the expression level of miR-449a was significantly decreased in the prefrontal cortex and hippocampus of 12-month old SAMP8 mice; a dual-luciferase reporter assay verified that miR-449a regulated ScN2B expression by binding to the 3'-UTR 'seed region'; an anti-Ago co-immunoprecipitation combined with Affymetrix microarray analyses demonstrated that the target mRNA highly enriched with Ago-miRNPs was confirmed to be ScN2B. Finally, overexpression of miR-449a or inhibition of ScN2B promoted the extension of hippocampal neurons in vitro. The results of the present study suggested that miR-449a was downregulated in the prefrontal cortex and hippocampus of SAMP8 mice and may regulate the process of brain aging by targeting ScN2B.
MicroRNAs (miRNAs/miRs) play vital roles in various immune diseases including systemic lupus erythematosus (SLE). The current study aimed to assess the role of miR-145 in interleukin-6 (IL-6)-treated HaCaT cells under ultraviolet B (UVB) irradiation and further explore the potential regulatory mechanism. HaCaT cells were pretreated with IL-6 and then exposed to UVB to assess the effect of IL-6 on sensitivity of HaCaT cells to UVB irradiation. The levels of miR-145 and MyD88 were altered by transfection and the transfected efficiency was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR)/western blot analysis. Cell viability, percentage of apoptotic cells and expression levels of apoptosis-related factors were measured by trypan blue assay, flow cytometry assay, and western blot analysis, respectively. In addition, the levels of c-Jun N-terminal kinases (JNK) and nuclear factor-κB (NF-κB) signaling pathway-related factors were assessed by western blot analysis. IL-6 treatments significantly aggravated the reduction of cell viability and promotion of cell apoptosis caused by UVB irradiation in HaCaT cells. Interestingly, miR-145 level was augmented by UVB exposure and miR-145 mimic alleviated IL-6-induced increase of sensitivity to UVB irradiation in HaCaT cells, as dramatically increased cell viability and reduced cell apoptosis. Opposite effects were observed in miR-145 inhibitor-transfected cells. Meanwhile, MyD88 was negatively regulated by miR-145 and MyD88 mediated the regulatory effect of miR-145 on IL-6- and UVB-treated cells. In addition, miR-145 mimic inhibited the JNK and NF-κB pathways by down-regulating MyD88. In conclusion, the present study demonstrated that miR-145 alleviated IL-6-induced increase of sensitivity to UVB irradiation by down-regulating MyD88 in HaCaT cells.
Cervical cancer, which is significantly associated with high-risk human papillomavirus (HPV) infection, currently ranks the fourth most common cancer among women worldwide. Previous literature reported that the elevated expression of G6PD was significantly correlated with the occurrence and deterioration of human cervical cancer, especially with the cervical cancer with HPV16 and HPV18 infection. In this study, we verified that G6PD expression has a strong positive correlation with HPV16 E6 levels in cervical cancer tissues and cells. In addition, regulating the expression of HPV16 E6 significantly affected the proliferation, apoptosis, migration, and invasion in the cervical cancer HeLa cells, as well as the transcript and protein levels of G6PD. The luciferase reporter assay and ChIP assay proved that HPV16 E6 stimulated the transcription of G6PD mRNA and subsequently enhanced the expression of G6PD through directly binding to the specific sites in the promoter of G6PD. Our findings reveal that HPV16 E6 is a novel regulatory factor of G6PD. Furthermore, by regulating the expression of G6PD, HPV16 E6 might promote the proliferation and migration potential, and inhibit apoptosis of cervical cancer cells, which ultimately contributed to the progression and metastasis of cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.