The objective of the research described here is to elucidate the fundamental mechanism by which the new class of "inert" non-enzymatic and boronic acid functionalized carbon dots-based sensors facilitate intracellular detection of glucose. The study suggests that the mechanism of detection of glucose involved selective assembly and fluorescence quenching of the carbon dots with excellent dynamic response to varying concentration of glucose within the biological range (1-100 mM). The strong dynamic response was related to high selectivity to biomolecules and inertness of carbon dots. Furthermore, the functionalization of carbon dots with boronic acid was the governing factor response for the passive character of the carbon dots. The study lays the foundation for the new field of carbon-based nanochemosensors.
The study concerns processing-structure-functional property relationship in organic-inorganic hybrid scaffolds based on grafted collagen for bone tissue engineering. Biodegradable polyester, polycaprolactone (PCL) and nanohydroxyapatite were used to fabricate three-dimensional porous scaffolds by adopting a combination of solvent casting, particulate leaching, and polymer leaching approaches. The PCL scaffold was subsequently surface modified by chemical bonding of 1,6-hexanediamine to the ester groups of PCL to introduce free NH2 groups. The introduction of NH2 groups as active sites enabled immobilization of biocompatible macromolecule, collagen, on the aminolyzed PCL via a cross-linking agent, glutaraldehyde. The osteoblasts' functions, notably cell adhesion, proliferation, and mineralization, were favorably modulated because of the chemical interaction between Arg-Gly-Asp domains in collagen molecule and integrin receptor in the cell membrane. The study underscores the significance of grafting collagen on PCL-nHA scaffold in modulating cellular activity and biological functions expanding its current use in soft tissue engineering to hard tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.