Chalcohalide semiconductors are an emergent class of materials for optoelectronics. Here, the first work on BiSI chalcohalide thin film photodetectors (PDs) is presented. An entirely new method for the fabrication of bismuth chalcohalide thin films (BiOI and BiSI) is developed. This method circumvents the use of any ligands or counter ions during fabrication and provides highly pure thin films free of carbon residues and other contaminants. When integrated into lithographically patterned lateral PDs these BiSI thin films show outstanding performances and high stability. The direct ≈1.55 eV bandgap of BiSI perfectly accommodates optical sensing over the full visible spectrum. The responsivity (R) of the BiSI PDs reaches 62.1 A W−1, which is the best value reported to date across chalcohalide materials of any type. The BiSI PDs display remarkable sensitivity to low light levels, supporting a broad operational detectivity ≈1012 Jones over four decades in light intensity, with a peak specific detectivity (D*) of 2.01 × 1013 Jones. The dynamics of photocurrent generation are demonstrated to be dominated by photoconductive gain. These results cement BiSI as an exciting candidate for high performance photodetector applications and encourage ongoing work in BiSX (X = Cl, Br, I) materials for optoelectronics.
One of the most challenging tasks faced by the pharmaceutical researchers is the ophthalmic drug delivery. Their aim is to obtain and maintain a therapeutic level at the site of action for prolonged period of time. Therefore, to sustain drug levels at the target site for a sufficient time, novel drug delivery techniques should be developed. Ophthalmic drug delivery has proved significant advancement for future point of view. This article evaluates a variety of novel systems for ophthalmic drug delivery.
The volatiles chemical composition and biological attributes of coriander ( Coriandrum sativum L.) leaves essential oil obtained by two extraction techniques namely supercritical fluid extraction and hydro-distillation is appraised. The coriander essential oil yield (.12%) by hydro-distillation was slightly higher than that of supercritical fluid extraction (.09%). The physico-chemical variables of the essential oil obtained from both the techniques varied in significantly (P < .05). GC-MS analysis identified 23 different components in supercritical fluid extracted oil and 18 components in hydro-distilled essential oil having linalool as major component (51.32% and 61.78%, respectively) followed by phytol (12.71%). The oil recovered by supercritical fluid extraction exhibited greater DPPH radical scavenging activity as well as reducing power as compared to the essential oil obtained by hydro-distillation technique along with a stronger biofilm inhibition and least hemolysis. The results of antimicrobial activity revealed that super critical fluid extracted essential oil has potent antifungal and antibacterial activity against P. multocida and A alternata, whereas hydro-distilled essential oil displayed better antimicrobial potential against E coli and A niger. Overall, these results depict that supercritical fluid extraction is superior than hydro-distillation with regard to isolation of better-quality coriander essential oil for nutra-pharmaceutical developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.