Background Multimorbidity is the co-occurrence of two or more chronic diseases. Objective This study, based on self-reported medical diagnosis, aims to investigate the dynamic distribution of multimorbidity across sociodemographic levels and its impacts on health-related issues over 15 years in Brazil using national data. Methods Data were analyzed using descriptive statistics, hypothesis tests, and logistic regression. The study sample comprised 679,572 adults (18-59 years of age) and 115,699 elderly people (≥60 years of age) from the two latest cross-sectional, multiple-cohort, national-based studies: the National Sample Household Survey (PNAD) of 1998, 2003, and 2008, and the Brazilian National Health Survey (PNS) of 2013. Results Overall, the risk of multimorbidity in adults was 1.7 times higher in women (odds ratio [OR] 1.73, 95% CI 1.67-1.79) and 1.3 times higher among people without education (OR 1.34, 95% CI 1.28-1.41). Multiple chronic diseases considerably increased with age in Brazil, and people between 50 and 59 years old were about 12 times more likely to have multimorbidity than adults between 18 and 29 years of age (OR 11.89, 95% CI 11.27-12.55). Seniors with multimorbidity had more than twice the likelihood of receiving health assistance in community services or clinics (OR 2.16, 95% CI 2.02-2.31) and of being hospitalized (OR 2.37, 95% CI 2.21-2.56). The subjective well-being of adults with multimorbidity was often worse than people without multiple chronic diseases (OR=12.85, 95% CI: 12.07-13.68). These patterns were similar across all 4 cohorts analyzed and were relatively stable over 15 years. Conclusions Our study shows little variation in the prevalence of the multimorbidity of chronic diseases in Brazil over time, but there are differences in the prevalence of multimorbidity across different social groups. It is hoped that the analysis of multimorbidity from the two latest Brazil national surveys will support policy making on epidemic prevention and management.
The paper presents an innovative application to identify areas vulnerable to coronavirus disease 2019 (COVID-19) considering a combination of spatial analysis and a multi-criteria learning approach. We applied this methodology in the state of Pernambuco, Brazil identifying vulnerable areas by considering a set of determinants and risk factors for COVID-19, including demographic, economic and spatial characteristics and the number of human COVID-19 infections. Examining possible patterns over a set number of days taking the number of cases recorded, we arrived at a set of compatible decision rules to explain the relation between risk factors and COVID-19 cases. The results reveal why certain municipalities are critically vulnerable to COVID-19 highlighting locations for which knowledge can be gained about environmental factors.
Dentro de uma abordagem qualitativa de pesquisa, desenvolvemos uma pesquisa-ação numa turma de 9º ano do ensino fundamental de uma escola pública do estado de Alagoas, com o objetivo de refletir sobre o trabalho com a leitura e produção de textos em sala de aula. Para isso, promovemos atividades que contribuíram para um trabalho significativo com a língua portuguesa, na perspectiva do letramento, considerando a importância das discussões sobre o envolvimento do/a estudante com o trabalho escolar; sua constituição de ethos nesse processo e a relação que poderíamos estabelecer entre saberes instituídos e saberes locais.
Background Multimorbidity is characterized by the co-occurrence of 2 or more chronic diseases and has been a focus of the health care sector and health policy makers due to its severe adverse effects. Objective This paper aims to use the latest 2 decades of national health data in Brazil to analyze the effects of demographic factors and predict the impact of various risk factors on multimorbidity. Methods Data analysis methods include descriptive analysis, logistic regression, and nomogram prediction. The study makes use of a set of national cross-sectional data with a sample size of 877,032. The study used data from 1998, 2003, and 2008 from the Brazilian National Household Sample Survey, and from 2013 and 2019 from the Brazilian National Health Survey. We developed a logistic regression model to assess the influence of risk factors on multimorbidity and predict the influence of the key risk factors in the future, based on the prevalence of multimorbidity in Brazil. Results Overall, females were 1.7 times more likely to experience multimorbidity than males (odds ratio [OR] 1.72, 95% CI 1.69-1.74). The prevalence of multimorbidity among unemployed individuals was 1.5 times that of employed individuals (OR 1.51, 95% CI 1.49-1.53). Multimorbidity prevalence increased significantly with age. People over 60 years of age were about 20 times more likely to have multiple chronic diseases than those between 18 and 29 years of age (OR 19.6, 95% CI 19.15-20.07). The prevalence of multimorbidity in illiterate individuals was 1.2 times that in literate ones (OR 1.26, 95% CI 1.24-1.28). The subjective well-being of seniors without multimorbidity was 15 times that among people with multimorbidity (OR 15.29, 95% CI 14.97-15.63). Adults with multimorbidity were more than 1.5 times more likely to be hospitalized than those without (OR 1.53, 95% CI 1.50-1.56) and 1.9 times more likely need medical care (OR 1.94, 95% CI 1.91-1.97). These patterns were similar in all 5 cohort studies and remained stable for over 21 years. A nomogram model was used to predict multimorbidity prevalence under the influence of various risk factors. The prediction results were consistent with the effects of logistic regression; older age and poorer participant well-being had the strongest correlation with multimorbidity. Conclusions Our study shows that multimorbidity prevalence varied little in the past 2 decades but varies widely across social groups. Identifying populations with higher rates of multimorbidity prevalence may improve policy making around multimorbidity prevention and management. The Brazilian government can create public health policies targeting these groups, and provide more medical treatment and health services to support and protect the multimorbidity population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.