Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
The potato () tuber is a swollen stem. Sprouts growing from the tuber nodes represent loss of apical dominance and branching. Long cold storage induces loss of tuber apical dominance and results in secondary branching. Here, we show that a similar branching pattern can be induced by short heat treatment of the tubers. Detached sprouts were induced to branch by the heat treatment only when attached to a parenchyma cylinder. Grafting experiments showed that the scion branches only when grafted onto heat- or cold-treated tuber parenchyma, suggesting that the branching signal is transmitted systemically from the bud-base parenchyma to the grafted stem. Exogenous supply of sucrose (Suc), glucose, or fructose solution to detached sprouts induced branching in a dose-responsive manner, and an increase in Suc level was observed in tuber parenchyma upon branching induction, suggesting a role for elevated parenchyma sugars in the regulation of branching. However, sugar analysis of the apex and node after grafting showed no distinct differences in sugar levels between branching and nonbranching stems. Vacuolar invertase is a key enzyme in determining the level of Suc and its cleavage products, glucose and fructose, in potato parenchyma. Silencing of the vacuolar invertase-encoding gene led to increased tuber branching in combination with branching-inducing treatments. These results suggest that Suc in the parenchyma induces branching through signaling and not by excess mobilization from the parenchyma to the stem.
Maintaining microbial safety and quality of fresh fruits and vegetables are a global concern. Harmful microbes can contaminate fresh produce at any stage from farm to fork. Microbial contamination can affect the quality and shelf-life of fresh produce, and the consumption of contaminated food can cause foodborne illnesses. Additionally, there has been an increased emphasis on the freshness and appearance of fresh produce by modern consumers. Hence, disinfection methods that not only reduce microbial load but also preserve the quality of fresh produce are required. Chlorine dioxide (ClO2) has emerged as a better alternative to chlorine-based disinfectants. In this review, we discuss the efficacy of gaseous and aqueous ClO2 in inhibiting microbial growth immediately after treatment (short-term effect) versus regulating microbial growth during storage of fresh produce (long-term effect). We further elaborate upon the effects of ClO2 application on retaining or enhancing the quality of fresh produce and discuss the current understanding of the mode of action of ClO2 against microbes affecting fresh produce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.