The agricultural industry is getting more data-centric and requires precise, more advanced data and technologies than before, despite being familiar with agricultural processes. The agriculture industry is being advanced by various information and advanced communication technologies, such as the Internet of Things (IoT). The rapid emergence of these advanced technologies has restructured almost all other industries, as well as advanced agriculture, which has shifted the industry from a statistical approach to a quantitative one. This radical change has shaken existing farming techniques and produced the latest prospects in a series of challenges. This comprehensive review article enlightens the potential of the IoT in the advancement of agriculture and the challenges faced when combining these advanced technologies with conventional agricultural systems. A brief analysis of these advanced technologies with sensors is presented in advanced agricultural applications. Numerous sensors that can be implemented for specific agricultural practices require best management practices (e.g., land preparation, irrigation systems, insect, and disease management). This review includes the integration of all suitable techniques, from sowing to harvesting, packaging, transportation, and advanced technologies available for farmers throughout the cropping system. Besides, this review article highlights the utilization of other tools such as unmanned aerial vehicles (UAVs) for crop monitoring and other beneficiary measures, such as optimizing crop yields. In addition, advanced programs based on the IoT are also discussed. Finally, based on our comprehensive review, we identified advanced prospects regarding the IoT, which are essential tools for sustainable agriculture.
The agricultural sector worldwide is facing many issues relating to crop productivity due to the lack of communication between extension workers and farmers. To reduce this gap, information technology like mobile phones are one of the essential communication devices in numerous fields as well as agriculture. This review aims to analyze mobile phone usage in agricultural modernization and rural development. The advancement of the agricultural sector in rural areas is essential for reducing poverty among growers. As we all know, agricultural activities provide employment opportunities and generate income in rural areas. Poverty can be decreased by advancement in the agriculture sector for better production. Agriculture production, socioeconomic conditions, and food security can be improved by increasing the usage of mobile phones for easy and accurate agricultural knowledge sharing to the farming community.
Streptomyces scabies is a Gram-positive bacterial pathogen that causes common scab disease to several crops, particularly in the potato. It is a soil borne pathogen, a very devastating scab pathogen and difficult to manage in the field. Streptomyces has several species that cause common scab such as S. scabiei, S. acidiscabies, S. europaeiscabiei, S. luridiscabiei, S. niveiscabiei, S. puniciscabiei, S. reticuliscabiei, S. stelliscabiei, S. turgidiscabies, S. ipomoeae. Common scab disease harmfully affects potato economic and market value due to the presence of black spots on the tuber. Owing to its genetic diversity and pathogenicity, the determination of pathogen presence in potato fields is still challenging. In this study, S. scabies genetic diversity was measured by surveying five potato-growing areas of Pakistan during the growing season 2019. A total of 50 Streptomyces isolates, including S. scabies, S. acidiscabies, S. griseoflavus were isolated and identified based on morphologic, biochemical and molecular analysis. Virulent confirmation assays confirmed ten virulent strains of Streptomyces spp. On the potato cultivars Cardinal and Santee. Among the Streptomyces species, S. scabies showed the highest scab index, followed by S. acidiscabies and S. griseoflavus by exhibiting the scab-like lesions on potato tubers. Ten potato cultivars were screened against these virulent isolates of Streptomyces. The Faisalabad white variety showed the highest scab index followed By Cardinal, Tourag, Kuroda, Santee, Lady Rosetta, Asterix, Diamant, Faisalabad red and Sadaf. Moreover, genetic diversity and pathogenicity of Streptomyces spp. on potato tubers were also likely diverse in different geographical regions and also potato cultivars. This study represents a contribution to understanding the local interaction between potatoes and Streptomyces spp. in Pakistan. It will aid in supporting a solution for the management of this pathogen around the world.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.