Background Exosomes are natural nanoparticles that are involved in intercellular communication via transferring molecular information between cells. Recently, exosomes have been considered for exploitation as novel drug delivery systems due to their specific properties for carrying specific molecules and surface proteins. Methods In this study, U-87 cell derived exosomes have been investigated for delivery of a potent chemotherapeutic agent, paclitaxel (PTX). Two methods of loading were utilized to incorporate PTX in exosomes and the exosomes pharmaceutical and cytotoxic characterizations were determined. Results The drug loaded and empty exosomes were found to have particle size of 50-100 nm and zeta potential of ≈ − 20 mV. Loading capacity of 7.4 ng and 9.2 ng PTX into 1 μg of exosome total protein were also measured for incubation and sonication methods, respectively. Incorporation of PTX into exosomes significantly increased its cytotoxicity against U-87 cell line (59.92% cell viability) while it was found that the empty exosomes exhibited cell viability of 91.98%. Conclusions Loading method could affect the loading capacity of exosomes and their encapsulated chemotherapeutic molecule showed higher cytotoxicity into exosomes. These results promise exosomes as appropriate drug delivery system for glioblastoma multiform (GBM) treatment.
The blood–brain barrier (BBB) serves as a protective barrier for the central nervous system (CNS) against drugs that enter the bloodstream. The BBB is a key clinical barrier in the treatment of CNS illnesses because it restricts drug entry into the brain. To bypass this barrier and release relevant drugs into the brain matrix, nanotechnology-based delivery systems have been developed. Given the unstable nature of NPs, an appropriate amount of a biocompatible polymer coating on NPs is thought to have a key role in reducing cellular cytotoxicity while also boosting stability. Human serum albumin (HSA), poly (lactic-co-glycolic acid) (PLGA), Polylactide (PLA), poly (alkyl cyanoacrylate) (PACA), gelatin, and chitosan are only a few of the significant polymers mentioned. In this review article, we categorized polymer-coated nanoparticles from basic to complex drug delivery systems and discussed their application as novel drug carriers to the brain.
Surface active agents have been used in many pharmaceutical formulations for different purposes as penetration enhancers. In this study, the penetration enhancement activity of four nonionic surfactants from polyoxyethylene sorbitan fatty acid esters alone and in combination with some short-chain alcohols on red blood cells were investigated. Hemolysis at different concentrations of each nonionic surfactant (0. 1, 0.2, 0.5, 1, and 2%) and ethanol, isopropyl alcohol, glycerol, and propylene glycol (0.5, 1, 2, 5, and 10% w/v) were investigated. Critical micelle concentration (CMC) and micellization thermodynamic parameters of tween 80 in presence of ethanol and glycerol at different concentrations were determined. The influence of the ethanol and glycerol on nonionic surfactant micelle formation was evaluated by determining CMC and micellization thermodynamic parameters of tween80 at different concentrations of alcohol-tween mixtures. The mixture of Tween 20 and glycerol have the lowest hemolytic activity while tween 80-ethanol mixture has the highest hemolysis activity. The self-aggregation of surfactant monomers was affected by short-chain alcohols. The structure breaking ability of alcohol and their interactions with the hydrophilic-hydrophobic groups of surfactants might be the main factors for changing the micelle formation. The CMCs of tween 80 was incremented by increasing the concentration of alcohol. The results indicated that by adding and increasing short chain alcohols the CMCs increased also the CMCs were increasing through raising the temperature (while in the presents of surfactants alone the CMCs decreased by raising temperature).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.