Spatial variations of atmospheric dust load do not seem to be a factor in the occurrence of localized meningitis epidemics, and the factor triggering them remains to be identified. The pathophysiological mechanism linking early cases to localized epidemics is not understood, but their occurrence and number of early cases could be an indicator for epidemic risk. https://doi.org/10.1289/EHP2752.
Meningococcal meningitis epidemics in the African meningitis belt consist of localised meningitis epidemics (LME) that reach attack proportions of 1% within a few weeks. A meningococcal serogroup A conjugate vaccine was introduced in meningitis belt countries from 2010 on, but LME due to other serogroups continue to occur. The mechanisms underlying LME are poorly understood, but an association with respiratory pathogens has been hypothesised. We analysed national routine surveillance data in high spatial resolution (health centre level) from 13 districts in Burkina Faso, 2004–2014. We defined LME as a weekly incidence rate of suspected meningitis ≥75 per 100,000 during ≥2 weeks; and high incidence episodes of respiratory tract infections (RTI) as the 5th quintile of monthly incidences. We included 10,334 health centre month observations during the meningitis season (January-May), including 85 with LME, and 1891 (1820) high-incidence episodes of upper (lower) RTI. In mixed effects logistic regression accounting for spatial structure, and controlling for dust conditions, relative air humidity and month, the occurrence of LME was strongly associated with high incidence episodes of upper (odds ratio 23.9, 95%-confidence interval 3.1–185.3), but not lower RTI. In the African meningitis belt, meningitis epidemics may be triggered by outbreaks of upper RTI.
The pathophysiological mechanisms underlying the seasonal dynamic and epidemic occurrence of bacterial meningitis in the African meningitis belt remain unknown. Regular seasonality (seasonal hyperendemicity) is observed for both meningococcal and pneumococcal meningitis and understanding this is critical for better prevention and modelling. The two principal hypotheses for hyperendemicity during the dry season imply (1) an increased risk of invasive disease given asymptomatic carriage of meningococci and pneumococci; or (2) an increased transmission of these bacteria from carriers and ill individuals. In this study, we formulated three compartmental deterministic models of seasonal hyperendemicity, featuring one (model1-‘inv’ or model2-‘transm’), or a combination (model3-‘inv-transm’) of the two hypotheses. We parameterised the models based on current knowledge on meningococcal and pneumococcal biology and pathophysiology. We compared the three models' performance in reproducing weekly incidences of suspected cases of acute bacterial meningitis reported by health centres in Burkina Faso during 2004–2010, through the meningitis surveillance system. The three models performed well (coefficient of determination R2, 0.72, 0.86 and 0.87, respectively). Model2-‘transm’ and model3-‘inv-transm’ better captured the amplitude of the seasonal incidence. However, model2-‘transm’ required a higher constant invasion rate for a similar average baseline transmission rate. The results suggest that a combination of seasonal changes of the risk of invasive disease and carriage transmission is involved in the hyperendemic seasonality of bacterial meningitis in the African meningitis belt. Consequently, both interventions reducing the risk of nasopharyngeal invasion and the bacteria transmission, especially during the dry season are believed to be needed to limit the recurrent seasonality of bacterial meningitis in the meningitis belt.
Despite improved surveillance capacities and WHO recommendations for subdistrict analysis, routine epidemic surveillance of acute bacterial meningitis in the African meningitis belt remains largely limited to the district level. We evaluated the appropriateness and performance of analyses at higher spatial resolution. We used suspected meningitis surveillance data at health centre (HC) resolution from Burkina Faso from 14 health districts spanning years 2004–2014 and analysed them using spatio-temporal statistics and generative models. An operational analysis compared epidemic signals at district and HC-level using weekly incidence thresholds. Eighty-four percent (N = 98/116) of epidemic clusters spanned only one HC-week. Spatial propagation of epidemic clusters was mostly limited to 10–30 km. During the 2004–2009 (with serogroup A meningitis) and 2010–2014 (after serogroup A elimination) period, using weekly HC-level incidence thresholds of 100 and 50 per 100,000 respectively, we found a gain in epidemic detection and timeliness in 9 (41% of total) and 10 (67%), respectively, district years with at least one HC signal. Individual meningitis epidemics expanded little in space, suggesting that a health centre level analysis is most appropriate for epidemic surveillance. Epidemic surveillance could gain in precision and timeliness by higher spatial resolution. The optimal threshold should be defined depending on the current background incidence of bacterial meningitis.
Efficient specimen transport systems are critical for early disease detection and reporting by laboratory networks. In Burkina Faso, centralized reference laboratories receive specimens from multiple surveillance sites for testing, but transport methods vary, resulting in potential delays and risk to specimen quality. The ministry of health and partners, under the Global Health Security Agenda implementation, piloted a specimen transport system for severe acute respiratory illness (SARI) surveillance in 4 Burkina Faso districts. A baseline assessment was conducted of the current specimen transport network structure and key stakeholders. Assessment results and guidelines for processing SARI specimens informed the pilot specimen transport system design and implementation. Monitoring and evaluation performance indicators included: proportion of packages delivered, timeliness, and quality of courier services (missed or damaged packages). Our baseline assessment found that laboratorians routinely carried specimens from the health center to reference laboratories, resulting in time away from laboratory duties and potential specimen delays or loss of quality. The pilot specimen transport system design engaged Sonapost, the national postal service, to transport specimens from SARI sites to the influenza national reference laboratory. From May 2017 to December 2018, the specimen transport system transported 557 packages containing 1,158 SARI specimens; 95% (529/557) were delivered within 24 hours of pickup and 77% (892/1,158) within 48 hours of collection. No packages were lost. This article highlights lessons learned that may be useful for other countries considering establishment of a specimen transport system to strengthen laboratory system infrastructure in global health security implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.