Inference systems are a well-defined technology derived from knowledge-based systems. Their main purpose is to model and manage knowledge as well as expert reasoning to insure a relevant decision making while getting close to human induction. Although handled knowledge are usually imperfect, they may be treated using a non classical logic as fuzzy logic or symbolic multi-valued logic. Nonetheless, it is required sometimes to consider both fuzzy and symbolic multi-valued knowledge within the same knowledge-based system. For that, we propose in this paper an approach that is able to standardize fuzzy and symbolic multi-valued knowledge. We intend to convert fuzzy knowledge into symbolic type by projecting them over the Y-axis of their membership functions. Consequently, it becomes feasible working under a symbolic multi-valued context. Our approach provides to the expert more flexibility in modeling their knowledge regardless of their type. A numerical study is provided to illustrate the potential application of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.