Holding non-co-located conversations while driving is dangerous (Horrey and Wickens, 2006;Strayer et al., 2006), much more so than conversations with physically present, "situated" interlocutors (Drews et al., 2004). In-car dialogue systems typically resemble non-co-located conversations more, and share their negative impact (Strayer et al., 2013). We implemented and tested a simple strategy for making in-car dialogue systems aware of the driving situation, by giving them the capability to interrupt themselves when a dangerous situation is detected, and resume when over. We show that this improves both driving performance and recall of system-presented information, compared to a non-adaptive strategy.
When a passenger speaks to a driver, he or she is co-located with the driver, is generally aware of the situation, and can stop speaking to allow the driver to focus on the driving task. In-car dialogue systems ignore these important aspects, making them more distracting than even cell-phone conversations. We developed and tested a "situationally-aware" dialogue system that can interrupt its speech when a situation which requires more attention from the driver is detected, and can resume when driving conditions return to normal. Furthermore, our system allows driver-controlled resumption of interrupted speech via verbal or visual cues (head nods). Over two experiments, we found that the situationally-aware spoken dialogue system improves driving performance and attention to the speech content, while driver-controlled speech resumption does not hinder performance in either of these two tasks.
It is established that driver distraction is the result of sharing cognitive resources between the primary task (driving) and any other secondary task. In the case of holding conversations, a human passenger who is aware of the driving conditions can choose to interrupt his speech in situations potentially requiring more attention from the driver, but in-car information systems typically do not exhibit such sensitivity. We have designed and tested such a system in a driving simulation environment. Unlike other systems, our system delivers information via speech (calendar entries with scheduled meetings) but is able to react to signals from the environment to interrupt when the driver needs to be fully attentive to the driving task and subsequently resume its delivery. Distraction is measured by a secondary short-term memory task. In both tasks, drivers perform significantly worse when the system does not adapt its speech, while they perform equally well to control conditions (no concurrent task) when the system intelligently interrupts and resumes.
In order to process incremental situated dialogue, it is necessary to accept information from various sensors, each tracking, in real-time, different aspects of the physical situation. We present extensions of the incremental processing toolkit IN-PROTK which make it possible to plug in such multimodal sensors and to achieve situated, real-time dialogue. We also describe a new module which enables the use in INPROTK of the Google Web Speech API, which offers speech recognition with a very large vocabulary and a wide choice of languages. We illustrate the use of these extensions with a description of two systems handling different situated settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.