Computing trajectory similarity is a fundamental operation in movement analytics, required in search, clustering, and classification of trajectories, for example. Yet the range of different but interrelated trajectory similarity measures can be bewildering for researchers and practitioners alike. This paper describes a systematic comparison and methodical exploration of trajectory similarity measures. Specifically, this paper compares five of the most important and commonly used similarity measures: dynamic time warping (DTW), edit distance (EDR), longest common subsequence (LCSS), discrete Fréchet distance (DFD), and Fréchet distance (FD). The paper begins with a thorough conceptual and theoretical comparison. This comparison highlights the similarities and differences between measures in connection with six different characteristics, including their handling of a relative versus absolute time and space, tolerance to outliers, and computational efficiency. The paper further reports on an empirical evaluation of similarity in trajectories with contrasting properties: data about constrained bus movements in a transportation network, and the unconstrained movements of wading birds in a coastal environment. A set of four experiments: a. creates a measurement baseline by comparing similarity measures to a single trajectory subjected to various transformations; b. explores the behavior of similarity measures on network-constrained bus trajectories, grouped based on spatial and on temporal similarity; c. assesses similarity with respect to known behavioral annotations (flight and foraging of oystercatchers); and d. compares bird and bus activity to examine whether they are distinguishable based solely on their movement patterns. The results show that in all instances both the absolute value and the ordering of similarity may be sensitive to the choice of measure. In general, all measures were more able to distinguish spatial differences in trajectories than temporal differences. The paper concludes with a high-level summary of advice and recommendations for selecting and using trajectory similarity measures in practice, with conclusions spanning our three complementary perspectives: conceptual, theoretical, and empirical.
BackgroundThe Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis.ResultsWe develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a “contextually naïve” model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM.ConclusionsOur algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed, while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for movement ecology research.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-015-0043-8) contains supplementary material, which is available to authorized users.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.