Hyperbolic media exhibit unparalleld properties, e.g, as light absorbers in photovoltaics and photonics, as superlenses in far-field imaging, as subwavelength light concentrators in nanolithography, or as novel materials in emission engineering. With the advent of optical metamaterials, deliberate design of material properties became possible. However, inadvertent variability in fabrication techniques and other factors limit performance characteristics of man-made hyperbolic materials. Here, we draw attention to a class of natural hyperbolic materials, the tetradymites. From generalized spectroscopic ellipsometry we extract the dielectric tensor components and find hyperbolic behavior in Bi2Se3 and Bi2Te3 in the near-infrared to visible spectrum. Previously, natural hyperbolic media were known only in the far-infrared spectral range. As possible applications of tetradymites we discuss superlenses for near-field microscopy and far-field isoindex filters. Solid solutions of tetradymites are likely tunable in operational wavelength from the infrared to the visible, complementing hyperbolic metamaterials.
Robust plasmonic nanoantennas at mid-infrared wavelengths are essential components for a variety of nanophotonic applications ranging from thermography to energy conversion. Titanium nitride (TiN) is a promising candidate for such cases due to its high thermal stability and metallic character. Here, we employ direct laser writing as well as interference lithography to fabricate large-area nanoantenna arrays of TiN on sapphire and silicon substrates. Our lithographic tools allow for fast and homogeneous preparation of nanoantenna geometries on a polymer layer, which is then selectively transferred to TiN by subsequent argon ion beam etching followed by a chemical wet etching process. The antennas are protected by an additional Al 2 O 3 layer which allows for high-temperature annealing in argon flow without loss of the plasmonic properties. Tailoring of the TiN antenna geometry enables precise tuning of the plasmon resonances from the near to the mid-infrared spectral range. Due to the advantageous properties of TiN combined with our versatile large-area and low-cost fabrication process, such refractory nanoantennas will enable a multitude of high-temperature plasmonic applications such as thermophotovoltaics in the future.
We systematically investigate the second harmonic generated (SHG) signal created by metallic semi-continuous thin films as a function of the effective layer thickness for a large number of samples. The control of the film thickness allows us to precisely map the region around the percolation threshold. We obtain a sharp and intense SHG peak at the critical thickness where the near static permittivity diverges. This happens in the regime of almost touching particles while the thin film does not behave as a metal yet. This large SHG signal is obtained with samples fabricated using a thin film deposition technique that is easily wafer scalable.
Fractals are promising candidates as nonperiodic, nonresonant structures exhibiting a homogeneous, isotropic, and frequency-independent effective optical response. We present a comprehensive optical investigation of a metallic Hilbert curve of fractal order N = 9 in the visible and nearinfrared spectral range. Our experiments show that high-order fractal nanostructures exhibit a nearly frequency independent reflectance and an inplane isotropic optical response. The response can be simulated in the framework of a simple effective medium approximation model with a limited number of parameters. It is shown that high-order Hilbert structures can be considered as a "transparent in-plane metal", the dielectric function of which is modified by the filling factor f, hence creating a tunable conductive effective metal with tailorable plasma frequency and variable reflectance without going through an insulator-to-metal transition.
Metal–dielectric composites exhibit remarkable properties at the percolation threshold. A small variation of the filling factor can lead to a huge variation in the dc conductivity from an insulator-like to a metal-like behavior while the real part of the permittivity diverges. This behavior can, in principle, be described by percolation theories at low frequencies and by effective medium approximations at higher frequencies. These theories assume a random distribution of the metallic inclusions inside the insulating matrix. But what happens in ordered structures when the percolation is deliberately suppressed? Even though a simple, nanometer-wide scratch can deteriorate the dc conductivity of a thin metal film, can it influence the mirror-like reflectivity? To address this question, we perform a systematic ellipsometric investigation on nearly closed Au films interrupted only by a two-dimensional periodic mesh of 20 nm wide lines. These nanostructured films have metal filling factors close to unity, but exhibit no dc conductivity. In the infrared, they show an antireflective behavior that can be tuned through the mesh periodicity. Surprisingly, the optical response of these structures can be modeled quite well by simple effective medium approximations. Increasing the size of the squares leads to a tunable, diverging, real part of the permittivity: a maximum of the real part of the permittivity of 1420 is found for the largest investigated squares in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.