Water deficit is a severe environmental stress and the major constraint on plant productivity with an evident effect on plant growth. The aim of this work was to study Triticum and Aegilops seedlings differing in their response to drought stress at the physiological and molecular levels. The identification of resistant and sensitive genotypes was firstly based on the relative water content (RWC) measurement. Further characterization of genotypes contrasting in their response to water stress was performed at the physiological level by determination of RWC, water loss rate (WLR) and free proline content after different hours of dehydration. Modification in the expression level of five dehydrin (DHN) genes was also analysed by reverse transcription-polymerase chain reaction (RT-PCR). Five cDNAs coding for different DHNs were identified and characterized. These genes are not expressed in the wellwatered plants, but only in the stressed plants. Four of these cDNAs are related to novel DHN sequences. The results obtained clearly indicate a relation between the expression of these genes and tissue water content. In particular, in the resistant genotypes the expression of DHN genes is initiated even though tissue hydration levels are still high, indicating also in wheat the involvement of these proteins in water retention.
Senescence is an integrated response of plants to various internal (developmental) and external (environmental) signals. It is a highly regulated process leading eventually to the death of cells, single organs such as leaves, or even whole plants. In cereals, which are monocarpic plants, senescence represents the final stage of development. In order to study senescence in durum wheat (Triticum turgidum subsp. durum), a cDNA-AFLP analysis was performed. The transcription profiles of plants at different developmental stages (flowering and senescent) were compared. About 2000 cDNA fragments, ranging in size from 160 to 1900 bp, were reproducibly detected. This allowed the identification of 57 differentially expressed cDNAs corresponding to genes belonging to different functional categories related to cellular metabolism, transcription, maintenance of DNA structure, transport and signal transduction. This paper reports the identification of novel durum wheat candidate genes involved in the senescence process, and provides new information about the senescence programme of this important crop species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.