Abstract— The unique properties of carbon nanotubes (CNTs) promise innovative solutions for a variety of display applications. The CNTs can be deposited from suspension. These simple and low‐cost techniques will replace time‐consuming and costly vacuum processes and can be applied to large‐area glass and flexible substrates. Single‐walled carbon nanotubes (SWNTs) have been used as conducting and transparent layers, replacing the brittle ITO, and as the semiconducting layer in thin‐film transistors (TFTs). There is no need for alignment because a CNT network is used instead of single CNTs. Both processes can be applied to glass and to flexible plastic substrates. The transparent and conductive nanotube layers can be produced with a sheet resistance of 400 Ω/□ at 80% transmittance. Such layers have been used to produce directly addressed liquid‐crystal displays and organic light‐emitting diodes (OLED). The CNT‐TFTs reach on/off ratios of more than 105 and effective charge‐carrier mobilities of 1 cm2/V‐sec and above.
Abstract— A calcium measurement setup was built for testing encapsulation especially for OLED applications. This setup is able to measure both reflective and transmissive cells. For the characterization of sealants, a method to compare them with other sealing products will be described. This includes the use of spacers, a homogeneous surface energy, and the geometry of the sealant line. The effects of different geometries will be discussed. The setup was designed to achieve good accuracy at a very reasonable component cost, which will allow other facilities to replicate this setup. Therefore, the construction plan as well as the list of components can be downloaded from our website (Ref. 3).
A four-mask low-temperature poly-Si (LTPS) TFT process for pand n-channel devices has been developed. PECVD-deposited amorphous silicon was recrystallized to polycrystalline-silicon with single-area excimer-laser crystallization, while the gate dielectric was fabricated by PECVD deposition of a SiH 4 -N 2 O-based silicon oxide. Formation of drain and source was carried out with selfaligned ion-beam implantation. To prove the potential capability of these devices, which are suitable for conventional and inverted OLEDs alike, several functional active-matrix backplanes implementing different pixel circuits have been produced. This active-matrix backplane process has been customized to drive small molecules as well as polymers regardless if its structure is top or bottom emitting.
Head-mounted or helmet-mounted displays (HMDs) have long proven invaluable for many military applications. Integrated with head position, orientation, and/or eye-tracking sensors, HMDs can be powerful tools for training. For such training applications as flight simulation, HMDs need to be lightweight and compact with good center-of-gravity characteristics, and must display realistic full-color imagery with eye-limited resolution and large field-of-view (FOV) so that the pilot sees a truly realistic out-the-window scene. Under bright illumination, the resolution of the eye is ~300 r (1 arc-min), setting the minimum HMD resolution. There are several methods of achieving this resolution, including increasing the number of individual pixels on a CRT or LCD display, thereby increasing the size, weight, and complexity of the HMD; dithering the image to provide an apparent resolution increase at the cost of reduced frame rate; and tiling normal resolution subimages into a single, larger high-resolution image. Physical Optics Corporation (POC) is developing a 5120 4096 pixel HMD covering 1500 1200 mr with resolution of 300 r by tiling 20 subimages, each of which has a resolution of 1024 1024 pixels, in a 5 4 array. We present theory and results of our preliminary development of this HMD, resulting in a 4k 1k image tiled from 16 subimages, each with resolution 512 512, in an 8 2 array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.