The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names.Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of ␥-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues.For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the...
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain -in particular the neocortex-like cognitive functions of the avian pallium -requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.One hundred years ago, Edinger, the father of comparative neuroanatomy, formulated a unified theory of brain evolution that formed the basis of a nomenclature that has been used to define the cerebral subdivisions of all vertebrates 1 . This resulted in terms and associated concepts such as palaeostriatum, archistriatum, neostriatum and neocortex that are still in common use. According to this theory, the avian cerebrum is almost entirely composed of basal ganglia, the basal ganglia is involved in only instinctive behaviour, and the malleable behaviour that is thought to typify mammals exclusively requires the so-called neocortex. However, towards the end of the twentieth century, there accumulated a wealth of evidence that these viewpoints were incorrect. The avian cerebrum has a large pallial territory that performs functions similar to those of the mammalian cortex. Although the avian pallium is nuclear, and the mammalian cortex is laminar in organization, the avian pallium supports cognitive abilities similar to, and for some species more advanced than, those of many mammals. To eliminate these misconceptions, an international forum of neuroscientists (BOX 1) has, for the first time in 100 years, developed new terminology that more accurately reflects our current understanding of the avian cerebrum and its homologies with mammals. This change in terminology is part of a new understanding of vertebrate brain evolution.In this article, we summarize the traditional view of telencephalic evolution before reviewing more recent findings and insights. We then present the new nomenclature that has been Correspondence to Erich Jarvis at the
Humans and songbirds are two of the rare animal groups that modify their innate vocalizations. The identification of FOXP2 as the monogenetic locus of a human speech disorder exhibited by members of the family referred to as KE enables the first examination of whether molecular mechanisms for vocal learning are shared between humans and songbirds. Here, in situ hybridization analyses for FoxP1 and FoxP2 in a songbird reveal a corticostriatal expression pattern congruent with the abnormalities in brain structures of affected KE family members. The overlap in FoxP1 and FoxP2 expression observed in the songbird suggests that combinatorial regulation by these molecules during neural development and within vocal control structures may occur. In support of this idea, we find that FOXP1 and FOXP2 expression patterns in human fetal brain are strikingly similar to those in the songbird, including localization to subcortical structures that function in sensorimotor integration and the control of skilled, coordinated movement. The specific colocalization of FoxP1 and FoxP2 found in several structures in the bird and human brain predicts that mutations in FOXP1 could also be related to speech disorders.
CorrectionsNEUROSCIENCE. For the article ''A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes,''
Many aspects of reproductive physiology are subject to regulation by social interactions. These include changes in neural and physiological substrates of reproduction. How can social behavior produce such changes? In experiments reported here, we manipulated the social settings of teleost fish and measured the effect (1) on stress response as reflected in cortisol production, (2) on reproductive potential as measured in production of the signaling peptide, gonadotropin-releasing hormone, and (3) on reproductive function measured in gonad size. Our results reveal that the level of the stress hormone cortisol depends critically on both the social and reproductive status of an individual fish and on the stability of its social situation. Moreover, the reproductive capacity of an individual fish depends on these same variables. These results show that social encounters within particular social contexts have a profound effect on the stress levels as well as on reproductive competence. Social behavior may lead to changes in reproductive state through integration of cortisol changes in time. Thus, information available from the stress pathway may provide socially relevant signals to produce neural change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.