The probability density function of the time of ruin in the classical model with exponential claim sizes is obtained directly by inversion of the associated Laplace transform. This result is then used to obtain explicit closed-form expressions for the moments. The form of the density is examined for various parameter choices.
In the classical compound Poisson risk model, it is assumed that a company (typically an insurance company) receives premium at a constant rate and pays incurred claims until ruin occurs. In contrast, for certain companies (typically those focusing on invention), it might be more appropriate to assume expenses are paid at a fixed rate and occasional random income is earned. In such cases, the surplus process of the company can be modelled as a dual of the classical compound Poisson model, as described in Avanzi et al. (2007). Assuming further that a barrier strategy is applied to such a model (i.e., any overshoot beyond a fixed level caused by an upward jump is paid out as a dividend until ruin occurs), we are able to derive integro-differential equations for the moments of the total discounted dividends as well as the Laplace transform of the time of ruin. These integro-differential equations can be solved explicitly assuming the jump size distribution has a rational Laplace transform. We also propose a discrete-time analogue of the continuous-time dual model and show that the corresponding quantities can be solved for explicitly leaving the discrete jump size distribution arbitrary. While the discrete-time model can be considered as a stand-alone model, it can also serve as an approximation to the continuous-time model. Finally, we consider a generalization of the so-called Dickson-Waters modification in optimal dividends problems by maximizing the difference between the expected value of discounted dividends and the present value of a fixed penalty applied at the time of ruin.
KEYWORDSDual model, barrier strategy, dividend moments, time of ruin, rational Laplace transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.