O-band InP etched facets lasers were heterogeneously integrated by micro-transfer-printing into a 1.54 µm deep recess created in the 3 µm thick oxide layer of a 220 nm SOI wafer. A 7 × 1.5 µm 2 cross-section, 2 mm long multimode polymer waveguide was aligned to the ridge post-integration by e-beam lithography with <0.7 µm lateral misalignment and incorporated a tapered silicon waveguide. A 170 nm thick metal layer positioned at the bottom of the recess adjusts the vertical alignment of the laser and serves as a thermal via to sink the heat to the Si substrate. This strategy shows a roadmap for active polymer waveguide-based photonic integrated circuits.
On-chip optical interconnects heterogeneously integrated on silicon wafers by transfer-print technology are presented for the first time. Thin (<5 μm), micron sized light-emitting diodes (LEDs) and photo diodes (PDs) are prefabricated and transfer-printed to silicon wafer with polymer waveguides built between them. Data transmission with total power consumption as low as 1 mW, signal to noise ratio of >250 and current transfer ratio of 0.1% in a compact volume of <0.0004 mm 3 are demonstrated. Experiment shows that the polymer waveguide between the LED and PD plays a key role in enhancing the data transmission efficiency. Reciprocal performance for bidirectional transmission is also achieved. The results show the potential for cost-effective and low profile form-factor on-chip opto-isolators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.