Aims/hypothesis Obesity and insulin resistance are associated with low-grade chronic inflammation. Glucagon-like peptide-1 (GLP-1) is known to reduce insulin resistance. We investigated whether GLP-1 has anti-inflammatory effects on adipose tissue, including adipocytes and adipose tissue macrophages (ATM). Methods We administered a recombinant adenovirus (rAd) producing GLP-1 (rAd-GLP-1) to an ob/ob mouse model of diabetes. We examined insulin sensitivity, body fat mass, the infiltration of ATM and metabolic profiles. We analysed the mRNA expression of inflammatory cytokines, lipogenic genes, and M1 and M2 macrophage-specific genes in adipose tissue by real-time quantitative PCR. We also examined the activation of nuclear factor κB (NF-κB), extracellular signalregulated kinase 1/2 and Jun N-terminal kinase (JNK) in vivo and in vitro. Results Fat mass, adipocyte size and mRNA expression of lipogenic genes were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Macrophage populations (F4/80 + and F4/80 + CD11b + CD11c + cells), as well as the expression and production of IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Expression of M1-specific mRNAs was significantly reduced, but that of M2-specific mRNAs was unchanged in rAd-GLP-1-treated ob/ob mice. NF-κB and JNK activation was significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Lipopolysaccharide-induced inflammation was reduced by the GLP-1 receptor agonist, exendin-4, in 3T3-L1 adipocytes and ATM. Conclusions/interpretation We suggest that GLP-1 reduces macrophage infiltration and directly inhibits inflammatory pathways in adipocytes and ATM, possibly contributing to the improvement of insulin sensitivity.
β-Hydroxybutyrate (HB) is a ketone body used as an energy source that has shown anti-inflammatory effects similar to calorie restriction (CR); Here, PGC-1α, an abundantly expressed co-factor in the kidney, was reported to interact with both FoxO1 and NF-κB although the definitive interactive mechanism has not yet been reported. In this study, we investigated whether renal aging-related inflammation is modulated by HB. We compared aged rats administered with HB to calorie restricted rats and examined the modulation of FoxO1 and the NF-κB pathway through interactions with PGC-1α. We found that in aged rats treated with HB, pro-inflammatory signaling changes were reversed and showed effects comparable to CR. As FoxO1 and its target genes catalase/MnSOD were upregulated by HB treatment and PGC-1α selectively interacted with FoxO1, not with NF-κB, and ameliorated the renal inflammatory response. These findings were further confirmed using FoxO1 overexpression and siRNA transfection
in vitro
. Our findings suggest that HB suppressed aging-related inflammation as a CR mimetic by enabling the co-activation and selective interaction between FoxO1 and PGC-1α. This study demonstrates the potential therapeutic role of HB as a CR mimetic, which ameliorates inflammation by a novel mechanism where FoxO1 outcompetes NF-κB by interacting with PGC-1α in aging kidneys.
Chronic kidney disease (CKD) is one of the most powerful predictors of premature cardiovascular disease (CVD), with heightened susceptibility to vascular intimal and medial calcification associated with a high cardiovascular mortality. Abnormal mineral metabolism of calcium (Ca) and phosphate (P) and underlying (dys)regulated hormonal control in CKD-mineral and bone disorder (MBD) is often accompanied by bone loss and increased vascular calcification (VC). While VC is known to be a multifactorial process and a major risk factor for CVD, the view of primary triggers and molecular mechanisms complexity has been shifting with novel scientific knowledge over the last years. In this review we highlight the importance of calcium-phosphate (CaP) mineral crystals in VC with an integrated view over the complexity of CKD, while discuss past and recent literature aiming to highlight novel horizons on this major health burden. Exacerbated VC in CKD patients might result from several interconnected mechanisms involving abnormal mineral metabolism, dysregulation of endogenous calcification inhibitors and inflammatory pathways, which function in a feedback loop driving disease progression and cardiovascular outcomes. We propose that novel approaches targeting simultaneously VC and inflammation might represent valuable new prognostic tools and targets for therapeutics and management of cardiovascular risk in the CKD population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.