Carbon nanowalls (CNWs) were synthesized by radical injection plasma-enhanced chemical vapor deposition and used as scaffolds for cell culture. The proliferation of osteoblast-like cells (Saos-2) was enhanced on the CNW scaffold upon electrical stimulation (ES) with 10 Hz square pulses at a current of 226 nA. However, after incubation with ES for 10 d, differentiation of the cells toward bone formation was suppressed.
Low-power analog-to-digital conversion is a key technique for power-limited biomedical applications such as power-limited continuous glucose monitoring. However, a conventional uniform-sampling analog-to-digital converter (ADC) is not suitable for nonuniform biosignals. A level-crossing ADC (LC-ADC) is a promising candidate for low-power biosignal processing because of its event-driven properties. The LC-ADC acquires data by level-crossing sampling. When an input signal crosses the threshold level, the LC-ADC samples the signal. The conventional LC-ADC employs a power-hungry comparator. In this paper, we present a low-power inverter-based LC-ADC. By adjusting the threshold level of the inverter, it can be used as a threshold-fixed window comparator. By using the inverter as an alternative to a comparator, power consumption can be markedly reduced. As a result, the total power consumption is successfully reduced by 90% of that of previous LC-ADC. The inverter-based LC-ADC was found to be very suitable for use in power-limited biomedical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.