Self-assembled monolayers (SAMs) of alkanethiols on gold have been employed as model substrates to investigate the effects of surface chemistry on cell behavior. However, few studies were dedicated to the substrates with a controlled wettability in studying stem cell fate. Here, mixed hydroxyl (-OH) and methyl (-CH3) terminated SAMs were prepared to form substrates with varying wettability, which were used to study the effects of wettability on the adhesion, spreading, proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) from human and mouse origins. The numbers of adhered human fetal MSCs (hMSCs) and mouse bone marrow MSCs (mMSCs) were maximized on -OH/-CH3 mixed SAMs with a water contact angle of 40~70° and 70~90°, respectively. Hydrophilic mixed SAMs with a water contact angle of 20~70° also promoted the spreading of both hMSCs and mMSCs. Both hMSCs and mMSCs proliferation was most favored on hydrophilic SAMs with a water contact angle around 70°. In addition, a moderate hydrophilic surface (with a contact angle of 40~90° for hMSCs and 70° for mMSCs) promoted osteogenic differentiation in the presence of biological stimuli. Hydrophilic mixed SAMs with a moderate wettability tended to promote the expression of αvβ1 integrin of MSCs, indicating that the tunable wettability of the mixed SAMs may guide osteogenesis through mediating the αvβ1 integrin signaling pathway. Our work can direct the design of biomaterials with controllable wettability to promote the adhesion, proliferation and differentiation of MSCs from different sources.
In this study, human mesenchymal stem cells (hMSCs) were cultured on the hydroxyapatite (HA) and mineralized collagen (MC), and their proliferation, adhesion, and differentiation, especially the molecular mechanisms on gene level, were investigated. Proliferation and morphological responses of hMSCs and their osteogenic differentiation were detected by quantitative detection of alkaline phosphatase. Gene expression profilings were examined by microarrays, and the gene expression data were studied through gene ontology terms and pathway analyses. The results showed that MC promoted cell proliferation and osteogenic differentiation of hMSCs. Microarray analysis showed that MC was conducive to express osteogenesis-related genes, such as BMP-2, COL1A1, and CTSK, and stimulate osteogenic differentiation, such as osteoblast differentiation pathway and skeletal system development pathway.
Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.