Multidrug resistance (MDR) has been a potentiator for the exploration of antibiotics. Nano drug delivery systems have opened new avenues to overcome this challenge. Although antibacterial nanocarriers are extensively realized, their effect on the bacteria residing inside the tissues and their toxicity is rarely explored. This study investigated the effects of flavonoid coated gold nanoparticles (FAuNPs) on the colonization of Enterococcus faecalis in the mouse liver and kidneys. Flavonoids were extracted from the leaves of Berberis lycium Royle and used to stabilize gold following a green synthesis approach. FAuNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FAuNPs showed significantly higher reduction in bacterial counts in in-vitro and in-vivo in mice organs as compared to the free flavonoids owing to their biocompatibility and effectiveness.
Polylactic acid (PLA) is a biodegradable thermoplastic polyester. In 2010, PLA became the second highest consumed bioplastic in the world due to its wide application. Conventionally, PLA is produced by direct condensation of lactic acid monomer and ring opening polymerization of lactide, resulting in lower molecular weight and lesser strength of polymer. Furthermore, conventional methods of PLA production require a catalyst which makes it inappropriate for biomedical applications. Newer method utilizes metabolic engineering of microorganism for direct production of PLA through fermentation which produces good quality and high molecular weight and yield as compared to conventional methods. PLA is used as decomposing packaging material, sheet casting, medical implants in the form of screw, plate, and rod pin, etc. The main focus of the review is to highlight the synthesis of PLA by various polymerization methods that mainly include metabolic engineering fermentation as well as salient biomedical applications of PLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.