Our current understanding of spatial behaviour and parietal lobe function is largely based on the belief that spatial neglect in humans (a lack of awareness of space on the side of the body contralateral to a brain injury) is typically associated with lesions of the posterior parietal lobe. However, in monkeys, this disorder is observed after lesions of the superior temporal cortex, a puzzling discrepancy between the species. Here we show that, contrary to the widely accepted view, the superior temporal cortex is the neural substrate of spatial neglect in humans, as it is in monkeys. Unlike the monkey brain, spatial awareness in humans is a function largely confined to the right superior temporal cortex, a location topographically reminiscent of that for language on the left. Hence, the decisive phylogenetic transition from monkey to human brain seems to be a restriction of a formerly bilateral function to the right side, rather than a shift from the temporal to the parietal lobe. One may speculate that this lateralization of spatial awareness parallels the emergence of an elaborate representation for language on the left side.
A separate pathway seems to be present in humans for sensing the orientation of gravity apart from the one for orientation perception of the visual world. This second graviceptive system decisively contributes to humans' control of upright body posture. Contraversive pushing occurring after stroke lesions may represent the behavioral correlate of a disturbed neural representation of this system.
Spatial neglect is usually assessed using cancellation tests or line bisection. A recent comparison of these tests has revealed a double dissociation, in which one neglect patient was impaired in line bisection but not in star cancellation whereas another showed the reverse deficit. This dissociation has prompted the question whether 'neglect' is still a meaningful theoretical entity. We compared line bisection and cancellation tasks regarding their accuracy in detecting spatial neglect. We tested 35 patients with well-defined spatial neglect using a line bisection task and four different cancellation tasks. The line bisection test missed 40% of our neglect patients. Far superior were the letter cancellation and bells tests, each of which missed only 6% of the cases. A deviation in line bisection is not fundamentally related to spatial neglect, but may also arise from other causes (e.g., hemianopia, or which hand is used), and therefore, should be treated with caution in clinical diagnosis. Cancellation tests, such as the bells test and letter cancellation, are more helpful tools to detect spatial neglect.
Lesion of the “vestibular cortex” in the human posterior insula leads to a tilted perception of visual vertical but not to tilted body posture and loss of lateral balance. However, some stroke patients show the reverse pattern. Although their processing of visual and vestibular inputs for orientation perception of the visual world is undisturbed, they push away actively from the ipsilesional side (the side of lesion location), leading to a contraversive tilt of the body (tilt toward the side opposite to the lesion) and falling to that side. Recently, the origin of contraversive pushing was identified as an altered perception of the body's orientation in relation to gravity. These patients experience their body as oriented “upright” when actually tilted enormously to the ipsilesional side (18° on average). The findings argued for a separate pathway in humans for sensing body orientation in relation to gravity apart from the one projecting to the vestibular cortex. The present study aimed at identifying this brain area. The infarcted brain regions of 23 consecutively admitted patients with severe contraversive pushing were projected onto a template MRI scan, which had been normalized to Talairach space. The overlapping area of these infarctions centered on the posterolateral thalamus. Our finding necessitates reinterpretation of this area as being only a “relay structure” of the vestibular pathway on its way from the brainstem to the vestibular cortex. The ventral posterior and lateral posterior nuclei of the posterolateral thalamus (and probably its cortical projections) rather seem to be fundamentally involved in the neural representation of a second graviceptive system in humans decisive for our control of upright body posture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.