During the selection of B cells within germinal centers (GC) on the basis of their affinity for T-dependent antigen, B cells not positively selected are eliminated within GC. This process of B cell death has been considered to be apoptosis. In a recent study, we have reported that, although a substantial number of thymocytes were considered to be dead because of their extremely small cell size and heavy chromatin condensation even though they were not yet phagocytosed (pyknosis), they were devoid of DNA fragmentation, the most characteristic feature for apoptosis. In this study, we examined in vivo the mechanism of B cell death within GC by using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) method to detect DNA double-strand breaks. TUNEL+ B cells were scattered throughout the upper dark and the light zones of GC. Double staining of the sections by the TUNEL method and acid phosphatase (AcP) activities showed that all the TUNEL+ B cells were phagocytosed by macrophages. Light microscopic and ultrastructural studies revealed the presence of small unphagocytosed B cells within the light zone. These cells are undoubtedly dead because they were much smaller than surrounding lymphoid cells and have a heavy chromatin condensation. Furthermore, ultrastructural detection of DNA fragmentation confirmed that these small unphagocytosed B cells were TUNEL-, implying that DNA fragmentation is not primarily involved in the cell death process of these small dead B cells. These results indicate that most B cells, not positively selected and thus destined to be eliminated, die within GC without DNA fragmentation, and are subsequently phagocytosed by macrophages and become TUNEL+. Typical apoptosis, characterized by DNA fragmentation in situ, is not the predominant type of cell death that occurs during the selection of B cells in GC.
Background This study was performed to investigate the mid-term results of Ti-Nb-Sn (TNS) alloy stem with a low Young’s modulus. Methods This study was a multicenter prospective cohort study. A total of 40 primary total hip arthroplasties performed between April 2016 and September 2017 was enrolled in this study. With the unique functional gradient properties by heating treatment, the strength of the proximal portion was enhanced, while the distal portion maintained a low Young’s modulus. The surgeries were performed through the posterolateral approach using the TNS alloy stems. Radiographs were taken from immediately after surgeries until 3 years, and stress shielding and subsidence of the stems were evaluated. The incidences of the stem breakage were also assessed. Clinical assessments were performed using Japanese Orthopaedic Association (JOA) and Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) scores. Results Among the 40 enrolled patients, 36 patients were female and 4 were male. At 3 years after surgery, there were no radiologic signs of loosening, subsidence, or breakage of the stem. Stress shielding was observed in 26 hips (65%). Of 26 hips, 16 hips (40%) were grade 1 and 10 hips (25%) were grade 2. There was no advanced stress shielding. The JOA and JHEQ scores significantly improved compared with the preoperative scores. Conclusion The current study using a new TNS alloy femoral stem showed good clinical outcomes at 3-year follow-up. Radiologically, there was no loosening or subsidence of the stem. The mild stress shielding was observed in 65% of patients. Trial registration Current Controlled Trials ISRCTN21241251. The date of registration was October 26, 2021. Retrospectively registered.
Thymocyte death has been recognized as one of the best models for studying apoptosis. Our recent study, however, indicated that most thymocytes die without DNA fragmentation and become terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling-positive (TUNEL+) only after being phagocytosed by macrophages. In this study, we used histological techniques using the TUNEL method, histochemistry, immunohistochemistry, and transmission electron microscopy as well as flow cytometry to examine in vivo the effect of glucocorticoid (GC), a well-known agent for inducing thymocyte apoptosis in vitro, on thymocyte death to determine whether or not DNA fragmentation was the first event of GC-induced thymocyte death. At 2 h and 4 h after GC injection, a large number of cortical thymocytes were TUNEL+. Most TUNEL+ cells were aggregated to form clusters. Double staining of the section showed that the TUNEL+ thymocytes were phagocytosed by acid phosphatase+ and Mac-2+ macrophages. An ultrastructural study indicated that a far greater number of small pyknotic thymocytes were present in the cortex of the GC-treated thymus than were observed in the control thymus, that all those pyknotic thymocytes were TUNEL-, and moreover, that at the electron microscopic level, TUNEL+ cells were all phagocytosed by macrophages. Flow cytometric analysis did not detect a single TUNEL+ thymocyte even 4 h after the GC treatment, suggesting that virtually no free dead thymocytes were present after DNA fragmentation. These results indicate that, consistent with our previous findings with normal thymocyte death and B cell death in the germinal centers, DNA fragmentation is not involved in the cell death process of the GC-induced rapid thymocyte death in vivo.
Bone resorption by hyperplastic fibrous tissue is a characteristic feature of various disorders, and accumulating evidence suggests that transformed appearing, activated fibroblast-like cells play a key role in the pathogenesis of these conditions. One striking example is rheumatoid arthritis (RA), in which fibroblast-like synoviocytes constitute a considerable proportion of the hyperplastic synovium and are involved critically in the destruction of articular cartilage and bone [1]. Aseptic prosthesis loosening (APL), although apparently different at first sight, is also among these conditions and is characterized by the development of a synovial-like interface membrane (SLIM) between the prosthesis and the adjacent bone. Several studies have demonstrated similarities between the SLIM and the hyperplastic synovium in RA [2] and, intriguingly, there are a number of common features between fibroblast-like cells in RA and prosthesis loosening fibroblasts (PLFs) found at sites of bone resorption in APL. Recent data indicate that PLFs share some characteristic features of RA synovial fibroblasts, including anchorage-independent proliferation [3,4], escape of contact inhibition [5], APL = aseptic prosthesis loosening; FACS = fluorescent-activated cell sorter; FCS = foetal calf serum; ICSS = intracranially self-stimulated; PLF = prosthesis loosening fibroblast; RA = rheumatoid arthritis; SCID = severe combined immunodeficient; SLIM = synovial-like interface membrane; TNF = tumour necrosis factor. (Print ISSN 1478-6354; Online ISSN 1478-6362). This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. AbstractTo date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.