Lichens represent an important resource for common traditional medicines due to their numerous metabolites that can exert diverse pharmacological activities including anticancer effects. To find new anticancer compounds with fewer side effects and low tumor resistance, a bioprospective study of Usnea barbata (L.) F.H. Wigg. (U. barbata), a lichen from the Călimani Mountains (Suceava county, Romania) was performed. The aim of this research was to investigate the anticancer potential, morphologic changes, wound healing property, clonogenesis, and oxidative stress biomarker status of four extracts of U. barbata in different solvents (methanol, ethanol, acetone, and ethyl acetate), and also of usnic acid (UA) as a positive control on the CAL-27 (ATCC® CRL-2095™) oral squamous carcinoma (OSCC) cell line and V79 (ATCC® CCL-93™) lung fibroblasts as normal cells. Using the MTT assay and according to IC50 values, it was found that the most potent anticancer property was displayed by acetone and ethyl acetate extracts. All U. barbata extracts determined morphological modifications (losing adhesion capacity, membrane shrinkage, formation of abnormal cellular wrinkles, and vacuolization) with higher intensity in tumor cells than in normal ones. The most intense anti-migration effect was established in the acetone extract treatment. The clonogenic assay showed that some U. barbata extracts decreased the ability of cancer cells to form colonies compared to untreated cells, suggesting a potential anti-tumorigenic property of the tested extracts. Therefore, all the U. barbata extracts manifest anticancer activity of different intensity, based, at least partially, on an imbalance in antioxidant defense mechanisms, causing oxidative stress.
This study aims to complete our research on Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from the Călimani Mountains, Romania, with an elemental analysis and to explore its antibacterial and antifungal potential. Thus, we analyzed twenty-three metals (Ca, Fe, Mg, Mn, Zn, Al, Ag, Ba, Co, Cr, Cu, Li, Ni, Tl, V, Mo, Pd, Pt, Sb, As, Pb, Cd, and Hg) in dried U. barbata lichen (dUB) by inductively coupled plasma mass spectrometry (ICP-MS). For the second study, we performed dried lichen extraction with five different solvents (ethyl acetate, acetone, ethanol, methanol, and water), obtaining five U. barbata dry extracts (UBDE). Then, using an adapted disc diffusion method (DDM), we examined their antimicrobial activity against seven bacterial species—four Gram-positive (Staphylococcus aureus, Enterococcus casseliflavus, Streptococcus pyogenes, and Streptococcus pneumoniae) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa)—and two fungi species (Candida albicans and Candida parapsilosis). Usnic acid (UA) was used as a positive control. The ICP-MS data showed a considerable Ca content (979.766 µg/g), followed by, in decreasing order, Mg, Mn, Al, Fe, and Zn. Other elements had low levels: Ba, Cu, Pb, and Cr (3.782–1.002 µg/g); insignificant amounts (<1 µg/g) of Hg and V were also found in dUB. The trace elements Ag, As, Cd, Co, Li, Tl, Mo, Pd, Pt, and Sb were below detection limits (<0.1 µg/g). The DDM results—expressed as the size (mm) of the inhibition zone diameter (IZs)—proved that the water extract did not have any inhibitory activity on any pathogens (IZs = 0 mm). Gram-positive bacteria displayed the most significant susceptibility to all other UBDE, with Enterococcus casseliflavus showing the highest level (IZs = 20–22 mm). The most susceptible Gram-negative bacterium was Pseudomonas aeruginosa (IZs = 16–20 mm); the others were insensitive to all U. barbata dry extracts (IZs = 0 mm). The inhibitory activity of UBDE and UA on Candida albicans was slightly higher than on Candida parapsilosis.
Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 ± 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 ± 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32–37 °C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents.
The agronomic benefits of biochar (BC) prepared by slow pyrolysis of vine pruning residues, which are produced in large quantities in Romania, were evaluated. Three soil types, i.e., slightly alkaline fluvisol (S1), slightly acidic chernozem (S2), and strongly acidic luvisol (S3), with mean values of pH of 7.99, 6.26, and 5.40, were amended with BC at a volumetric ratio between BC and soil of 20/80. A greenhouse experiment was performed for 109 days to assess the effects of BC amendment on bell pepper growth. The following treatments were applied: foliar fertilizer, BC, BC + foliar fertilizer (using two concentrations of foliar fertilizer solution), and a control. Strongly alkaline BC (pH of 9.89 ± 0.01) had a significant positive effect on the growth performance of bell pepper plants sown in the strongly acidic soil S3. The mean values of height, collar diameter, number of leaves, and root volume of plants grown in BC-amended soil S3 without foliar treatment were significantly higher (13–72% and 14–33%, respectively) than those of plants grown in non-amended soil S3 without and with foliar treatment. This beneficial effect of BC on bell pepper plant growth was due to the changes in the soil properties. BC significantly increased (up to eight times) electrical conductivity, pH, soluble phosphorus, potassium, and ammonium nitrogen concentrations of soil S3, and decreased its bulk density by 51%, resulting in improved water/nutrient uptake and plant growth performance. BC had no favourable effect on the growth parameters of bell pepper plants sown in slightly alkaline soil S1, and slightly acidic soil S2.
The paper aimed at studying the slow pyrolysis of vine pruning waste in a fixed bed reactor and characterizing the pyrolysis products. Pyrolysis experiments were conducted for 60 min, using CO2 as a carrier gas and oxidizing agent. The distribution of biochar and bio-oil was dependent on variations in heat flux (4244–5777 W/m2), CO2 superficial velocity (0.004–0.008 m/s), and mean size of vegetal material (0.007–0.011 m). Relationships among these factors and process performances in terms of yields of biochar (0.286–0.328) and bio-oil (0.260–0.350), expressed as ratio between the final mass of pyrolysis product and initial mass of vegetal material, and final value of fixed bed temperature (401.1–486.5 °C) were established using a 23 factorial design. Proximate and ultimate analyses, FT-IR and SEM analyses, measurements of bulk density (0.112 ± 0.001 g/cm3), electrical conductivity (0.55 ± 0.03 dS/m), pH (10.35 ± 0.06), and water holding capacity (58.99 ± 14.51%) were performed for biochar. Water content (33.2 ± 1.27%), density (1.027 ± 0.014 g/cm3), pH (3.34 ± 0.02), refractive index (1.3553 ± 0.0027), and iodine value (87.98 ± 4.38 g I2/100 g bio-oil) were measured for bio-oil. Moreover, chemical composition of bio-oil was evaluated using GC-MS analysis, with 27 organic compounds being identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.