In this contribution we apply a novel strategy for partial remapping to significantly enhance the reliability of coarse-grained reconfigurable architectures. If a component of the architecture is affected by a permanent error, it will be deactivated and the architecture is reconfigured to relinquish the concerned resource. This is achieved by spatially moving operations from defective to unused components. If no unused component is available, operations are additionally moved within time domain to free the required resources. In our experiments, we regard the failure of each single component in an array of processing elements. Depending on the resource usage of the application, between 70% and 100% of the defects can be tolerated. In average, the repair of one failure takes 36 seconds, and the clock frequency has to be reduced by just 0.8% to enable the execution of the changed application mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.