Complex effect of different contributions (spontaneously formed In nanoparticles, near-interface, surface and bulk layers) on electrophysical properties of InN epitaxial films is studied. Transport parameters of the surface layer are determined from the Shubnikov-de Haas oscillations measured in undoped and Mg-doped InN films at magnetic fields up to 63 T. It is shown that the In nanoparticles, near-interface and bulk layers play the dominant role in the electrical conductivity of InN, while influence of the surface layer is pronounced only in the compensated low-mobility InN:Mg films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.