The effects of Sheng Hua Tang (SHT) on uterine involution and ovarian activity were investigated in postpartum dairy cows. SHT (70 g) was given to dairy cows (n = 10) to evaluate its effects for five days from the first postpartum day. Postpartum cows fed with a basal diet without SHT were used as the control group (n = 10). Ultrasounds and blood tests were recorded for four weeks from postpartum day seven with a 3-d interval. The results showed that the areas and diameters of endometria were significantly (p<0.01) reduced in the group that received SHT compared to the control group on the seventh postpartum day. The group that received SHT had an intrauterine fluid volume mean of 1.2±0.6 cm3, which was significantly lower than that of the control group, 2.3±0.8 cm3 (p<0.01) on the 13th postpartum day. In addition, the uterine tension score was a mean of 1.0±0.0 in the group that received SHT, which was also significantly lower than that of the control group, 1.5±0.5 (p<0.01) on the 19th postpartum day. Taken together, the Chinese herbal medicine remedy, SHT, promoted uterine involution and ovarian activity in postpartum dairy cows.
Tomato spotted wilt virus (TSWV) and Calla lily chlorotic spot virus (CCSV) are two recognized species of the Tospovirus genus in the family Bunyaviridae infecting calla lily (Zantedeschia spp.). During 2005, 15 virus isolates were collected from different calla lily plants exhibiting yellow stripes on their leaves in Ho-Li, a major calla lily-production township in Taiwan. After three successive local lesion passages on Chenopodium quinoa Willd., diseased leaf tissues individually infected by these isolates were preserved in liquid nitrogen and used for subsequent identification studies. Using the tospovirus genus-specific primers gL3637 and gL4435c designed from the L RNA, an 800-bp DNA fragment was amplified in reverse transcription-PCR from all 15 isolates. Moreover, leaf extracts of the diseased calla lilies and the C. quinoa plants inoculated with the 15 virus isolates reacted with antisera against the nucleocapsid proteins (NP) of Capsicum chlorosis virus (CaCV)-gloxinia and Watermelon silver mottle virus (WSMoV), but not to monoclonal antibodies against the NP of TSWV, CCSV, Peanut chlorotic fan-spot virus (PCFV), or Impatiens necrotic spot virus (INSV) in indirect ELISA. These results indicate that the 15 virus isolates are tospoviruses belonging to the WSMoV serogroup. Additionally, we amplified and sequenced the full-length N gene from these tospovirus isolates using primers WN2328 (5′-CCATTGGTTTGCCTCCG-3′) and WN3534 (5′-CGTCGACAGAGCAATCGAGGC-3′) designed from the S RNA of WSMoV. The deduced amino acid sequences of the N protein from these 15 tospovirus isolates showed a greater than 92% identity to that of CaCV (GenBank Accession No. NC-008301). Furthermore, results of phylogenetic analysis of the 15 isolates on the basis of amino acids sequences, both genetic distance and parsimony trees indicated that they were all genetically clustered within CaCV using INSV, TSWV, and WSMoV as outgroups. The results indicate that the virus causing yellow stripes in calla lilies is a strain of CaCV. To our knowledge, this is the first evidence that CaCV can naturally infect calla lilies and cause yellow stripe symptoms. Reference: (1) F.-H. Chu et al. Phytopathology 91:361, 2001.
Capsicum chlorosis virus (CaCV), a thrips-transmitted, tentative species in the genus Tospovirus, family Bunyaviridae, was first identified in solanaceous crops, but also infects several ornamental crops such as orchid (4), gloxinia (3), and calla lily (1). From 2005 to 2007, virus-like yellow ringspots were observed on the leaves of amaryllis (Hippeastrum hybridum Hort.) and blood lily (Haemanthus multiflorus Martyn.) plants cultured in screenhouses and a private garden, respectively. Three of several hundred amaryllis plants in screenhouses from two places were observed as showing yellow ringspot symptoms and one of six blood lily plants was observed as showing similar yellow ringspot symptoms. Sap extracts from symptomatic leaves were inoculated to Chenopodium quinoa Willd. and the resulting local lesions were passaged three successive times to C. quinoa for virus isolation. Using the tospovirus genus-specific primers gL3637 and gL4435c designed from the conserved region in the L RNA (2), DNA fragments of the expected size of 800 bp were amplified by reverse transcription (RT)-PCR from field samples and local lesions from C. quinoa. Extracts from the diseased plants and local lesions of C. quinoa reacted strongly with antiserum against the nucleocapsid (N) protein of CaCV in ELISA and western blotting. To confirm the identity of this virus, we amplified the N gene from three amaryllis and one blood lily source using primer pair WN2328 and WN3534 designed from the S RNA of Watermelon silver mottle virus (1), and these products were cloned and sequenced. The sequence from each virus isolate was determined from three independent clones. The nucleotide and deduced amino acid sequences of N genes for the blood lily isolate (GenBank Accession No. EF101344) and three amaryllis isolates (GenBank Accession Nos. EF101343, EF137177, and FJ185170) had identities greater than 97% with that of a CaCV isolate infecting Capsicum spp. found in Australia (GenBank Accession No. AY036057). Phylogenetic analysis using maximum parsimony showed that these sequences clustered with CaCV. These results show that the virus identified from amaryllis and blood lily that were expressing yellow ringspot symptoms are isolates of CaCV. To our knowledge, this is the first report of CaCV naturally infecting amaryllis and blood lily and it could become an important threat to ornamental production in Taiwan. References: (1) C. C. Chen et al. Plant Dis. 91:1201, 2007. (2) F. H. Chu et al. Phytopathology 91:361, 2001. (3) H. T. Hsu et al. J. Gen. Plant Pathol. 66:167, 2000. (4) Y. X. Zheng et al. Eur. J. Plant Pathol. 120:199, 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.