We propose a novel multi-gate CMOS structure having a high mobility channel with optimal strain configuration, realized by appropriately merging globally-strained substrates with lateral strain relaxation technique. We report successful fabrication and operation of uniaxially-strained SGOI Fin and Tri-Gate pMOSFETs. The improved SCE immunity and the performance enhancement are demonstrated.
We propose a compact model of drain current in the ballistic mode in a cylindrical gate-all-around metal–oxide–semiconductor field-effect transistor (MOSFET). Wave functions of electrons in a channel are represented by a linear combination of wave functions in a cylindrical infinite quantum well. With these wave functions, the energy levels of electrons in a channel are analytically derived by approximately solving the Schrödinger equation. Drain current is obtained using a coupled equation of electron energy levels and a current equation for ballistic transport. Electron energy levels are compared with numerical simulation results. The electron energy levels obtained using our compact model demonstrate excellent agreement with numerical simulation results. With our compact model, surface potential, potential shape in the confinement plane, total charge density, electron energy level, and drain current are calculated self-consistently with only two fitting parameters and one transcendental equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.