Large particles containing nitric acid (HNO3) were observed in the 1999/2000 Arctic winter stratosphere. These in situ observations were made over a large altitude range (16 to 21 kilometers) and horizontal extent (1800 kilometers) on several airborne sampling flights during a period of several weeks. With diameters of 10 to 20 micrometers, these sedimenting particles have significant potential to denitrify the lower stratosphere. A microphysical model of nitric acid trihydrate particles is able to simulate the growth and sedimentation of these large sizes in the lower stratosphere, but the nucleation process is not yet known. Accurate modeling of the formation of these large particles is essential for understanding Arctic denitrification and predicting future Arctic ozone abundances.
Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere‐Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield (wavelength of 250 km or greater). The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110‐km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100‐to 150‐km‐diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hours. Aircraft flights through the anvil show that these cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. A three‐dimensional transient linear gravity wave simulation shows that the temporal and spatial distribution of meteorological variables associated with the 110‐km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400–600 m, a lifetime of 4.5–6 hours and a size comparable to the cells of low brightness temperature. The forcing amplitudes indicate that the zonal drag due to breaking mesoscale transient convective gravity waves is definitely important to the westerly phase of the stratopause semiannual oscillation and possibly important to the easterly phase of the quasi‐biennial oscillation. There is strong evidence that some of the mesoscale gravity waves break below 20 km as well. The effect of this wave breaking on the diabatic circulation below 20 km may be comparable to that of above‐cloud diabatic cooling.
Abstract.Observations These results show that denitrification in the Arctic lower stratosphere can approach the severity and extent of that previously observed only in the Antarctic.
Pervasive cirrus clouds in the tropical tropopause layer (TTL) play an important role in determining the composition of stratospheric air through dehydration of tropospheric air entering the stratosphere. This dehydration affects Earth's energy budget and climate, yet uncertainties remain regarding the microphysical processes that govern TTL cirrus. TTL cirrus were sampled with the NASA Global Hawk UAV for over 30 hr in the Western Pacific in 2014 during the Airborne Tropical TRopopause EXperiment. In situ measurements by a Fast Cloud Droplet Probe and Hawkeye probe (combination Fast Cloud Droplet Probe, Two‐Dimensional Stereo optical array probe, and Cloud Particle Imager) provided particle concentrations and sizing between 1‐ and 1,280‐μm diameter and high resolution images for habit identification. We present the variability in ice concentrations, size distributions, and habits as functions of temperature, altitude, and time since convective influence. Observed ice particles were predominantly small and quasi‐spheroidal in shape, with the percentage of quasi‐spheroids increasing with decreasing temperature. In comparison to the large fraction of the population consisting of quasi‐spheroids, faceted habits (columns, plates, rosettes, and budding rosettes) constituted a smaller percentage of the overall population and exhibited the opposite correlation with temperature. The trend of higher percentages of faceted crystals occurring at warmer temperatures may be due to diffusional growth or aggregation as particles descend through cloud, and/or the more rapid diffusional growth rate at warmer temperatures. Sampling was typically well away from deep convection, however, and very few aggregates were observed, so the trend of higher percentages of faceted habits is likely attributable to diffusional growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.