Background: Population health measurements are recognised as appropriate tools to support public health monitoring. Yet, there is still a lack of tools that offer a basis for policy appraisal and for foreseeing impacts on health equity. In the context of persistent regional inequalities, it is critical to ascertain which regions are performing best, which factors might shape future health outcomes and where there is room for improvement. Methods: Under the EURO-HEALTHY project, tools combining the technical elements of multi-criteria value models and the social elements of participatory processes were developed to measure health in multiple dimensions and to inform policies. The flagship tool is the Population Health Index (PHI), a multidimensional measure that evaluates health from the lens of equity in health determinants and health outcomes, further divided into sub-indices. Foresight tools for policy analysis were also developed, namely: (1) scenarios of future patterns of population health in Europe in 2030, combining group elicitation with the Extreme-World method and (2) a multi-criteria evaluation framework informing policy appraisal (case study of Lisbon). Finally, a WebGIS was built to map and communicate the results to wider audiences. Results: The Population Health Index was applied to all European Union (EU) regions, indicating which regions are lagging behind and where investments are most needed to close the health gap. Three scenarios for 2030 were produced-(1) the 'Failing Europe' scenario (worst case/increasing inequalities), (2) the 'Sustainable Prosperity' scenario (best case/decreasing inequalities) and (3) the 'Being Stuck' scenario (the EU and Member States maintain the status quo). Finally, the policy appraisal exercise conducted in Lisbon illustrates which policies have higher potential to improve health and how their feasibility can change according to different scenarios. Conclusions: The article makes a theoretical and practical contribution to the field of population health. Theoretically, it contributes to the conceptualisation of health in a broader sense by advancing a model able to integrate multiple aspects of health, including health outcomes and multisectoral determinants. Empirically, the model and tools are closely tied to what is measurable when using the EU context but offering opportunities to be upscaled to other settings.
Idiographic causal maps are extensively employed in Operational Research to support problem structuring and complex decision making processes. They model means-end or causal discourses as a network of concepts connected by links denoting influence, thus enabling the representation of chains of arguments made by decision-makers. There have been proposals to employ such structures to support the structuring of multicriteria evaluation models, within an additive value measurement framework. However, a drawback of this multi-methodological modelling is the loss of richness of interactions along the means-end chains when evaluating options. This has led to the development of methods that make use of the structure of the map itself to evaluate options, such as the Reasoning Maps method, which employs ordinal scales and ordinal operators for such evaluation. However, despite their potential, Reasoning Maps cannot model explicitly value interactions nor perform a quantitative ranking of options, limiting their applicability and usefulness. In this article we propose extending the Reasoning Maps approach through a multilinear evaluation model structure, built with the MACBETH multicriteria method. The model explicitly captures the value interactions between concepts along the map and employs the MACBETH protocol of questioning to assess the strength of influence for each means-end link. The feasibility of the proposed approach to evaluate options and to deal with multicriteria interactions is tested in a real-world application to support the construction of a population health index.
Background The COVID-19 pandemic catalyzed the adoption of home telemonitoring to cope with social distancing challenges. Recent research on home telemonitoring demonstrated benefits concerning the capacity, patient empowerment, and treatment commitment of health care systems. Moreover, for some diseases, it revealed significant improvement in clinical outcomes. Nevertheless, when policy makers and practitioners decide whether to scale-up a technology-based health intervention from a research study to mainstream care delivery, it is essential to assess other relevant domains, such as its feasibility to be expanded under real-world conditions. Therefore, scalability assessment is critical, and it encompasses multiple domains to ensure population-wide access to the benefits of the growing technological potential for home telemonitoring services in health care. Objective This systematic review aims to identify the domains and methods used in peer-reviewed research studies that assess the scalability of home telemonitoring–based interventions under real-world conditions. Methods The authors followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines and used multiple databases (PubMed, Scopus, Web of Science, and EconLit). An integrative synthesis of the eligible studies was conducted to better explore each intervention and summarize relevant information concerning the target audience, intervention duration and setting, and type of technology. Each study design was classified based on the strength of its evidence. Lastly, the authors conducted narrative and thematic analyses to identify the domains, and qualitative and quantitative methods used to support scalability assessment. Results This review evaluated 13 articles focusing on the potential of scaling up a home telemonitoring intervention. Most of the studies considered the following domains relevant for scalability assessment: problem (13), intervention (12), effectiveness (13), and costs and benefits (10). Although cost-effectiveness was the most common evaluation method, the authors identified seven additional cost analysis methods to evaluate the costs. Other domains were less considered, such as the sociopolitical context (2), workforce (4), and technological infrastructure (3). Researchers used different methodological approaches to assess the effectiveness, costs and benefits, fidelity, and acceptability. Conclusions This systematic review suggests that when assessing scalability, researchers select the domains specifically related to the intervention while ignoring others related to the contextual, technological, and environmental factors, which are also relevant. Additionally, studies report using different methods to evaluate the same domain, which makes comparison difficult. Future work should address research on the minimum required domains to assess the scalability of remote telemonitoring services and suggest methods that allow comparison among studies to provide better support to decision makers during large-scale implementation.
Background Health inequalities have been consistently reported across and within European countries and continue to pose major challenges to policy-making. The development of scenarios regarding what could affect population health (PH) inequalities across Europe in the future is considered critical. Scenarios can help policy-makers prepare and better cope with fast evolving challenges. Objective This paper describes the three 2030 time-horizon scenarios developed under the EURO-HEALTHY project, depicting the key factors that may affect the evolution of PH inequalities across European regions. Methods A three-stage socio-technical approach was applied: i) identification of drivers (key factors expected to affect the evolution of PH inequalities across European regions until 2030) – this stage engaged in a Web-Delphi process a multidisciplinary panel of 51 experts and other stakeholders representing the different perspectives regarding PH inequalities; ii) generation of scenario structures – different drivers’ configurations (i.e. their hypotheses for evolution) were organized into coherent scenario structures using the Extreme-World Method; and iii) validation of scenario structures and generation of scenario narratives. Stages ii) and iii) were conducted in two workshops with a strategic group of 13 experts with a wide view about PH inequalities. The scenario narratives were elaborated with the participants’ insights from both the Web-Delphi process and the two workshops, together with the use of evidence (both current and future-oriented) on the different areas within the PH domain. Results Three scenarios were developed for the evolution of PH inequalities in Europe until 2030: ‘ Failing Europe’ (worst-case but plausible picture of the future), ‘ Sustainable Prosperity’ (best-case but plausible picture of the future), and an interim scenario ‘ Being Stuck’ depicting a ‘to the best of our knowledge’ evolution. These scenarios show the extent to which a combination of Political, Economic, Social, Technological, Legal and Environmental drivers shape future health inequalities, providing information for European policy-makers to reflect upon whether and how to design robust policy solutions to tackle PH inequalities. Conclusions The EURO-HEALTHY scenarios were designed to inform both policy design and appraisal. They broaden the scope, create awareness and generate insights regarding the evolution of PH inequalities across European regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.