Greenhouse-grown tomato seedlings were inoculated naturally with two genera of powdery mildew conidia forming appressorial germ tubes that could not be differentiated by length alone. For direct identification, single germinated conidia were removed from leaves by means of a glass pipette linked to the manipulator of a high-fidelity digital microscope. This microscope enabled in vivo observation of the fungi without leaf decoloration or fungal staining. The isolated conidia were subjected to PCR amplification of the 5.8S rDNA and its adjacent internal transcribed spacer sequences followed by nested PCR to attain sensitivity high enough to amplify target nucleotide sequences (PCR/nested PCR). Target sequences from the conidia were completely coincident with those of the pathogen Oidium neolycopersici or Erysiphe trifolii (syn. Microsphaera trifolii), which is nonpathogenic on tomato. Using RT-PCR/nested PCR or multiplex RT-PCR/nested PCR, it was possible to amplify transcripts expressed in single conidia. Conidia at pre- and postgermination stages were removed individually from tomato leaves, and two powdery mildew genes were monitored. The results indicated that the beta-tubulin homolog TUB2-ol was expressed at pre- and postgermination stages and the cutinase homolog CUT1-ol was only expressed postgermination. Combining digital microscopic micromanipulation and two-step PCR amplification is thus useful for investigation of individual propagules on the surface of plants.
The infectivity of a Japanese isolate of tomato powdery mildew, Oidium neolycopersici KTP-01, to tomato cultivars was examined using a resistant cultivar Grace bred in The Netherlands to O. lycopersici, which was recently proposed to be renamed O. neolycopersici. Grace was severely infected with KTP-01, and its susceptibility was similar to that on susceptible tomato cultivars Moneymaker and Ponderosa, suggesting that KTP-01 differs in pathogenicity on tomatoes from those of European and American isolates.
Conidiogenesis by Oidium neolycopersici KTP-01 on tomato leaves was vitally monitored with a high-fidelity digital microscope. Conidiophores were initially formed 3 days after inoculation and then elongated to a maximum length within at least 12 h. The apical part was split into two cells after two successive septations, accompanied by apical expansion. These cells subsequently developed into primary and secondary conidia. An additional septation at the stem portion of the conidiophores produced a generative and a foot cell. Subsequent conidiation occurred during repeated cycles of splitting of the generative cell, maturation of the apical cell into a conidium, and abstriction of the conidium. To our knowledge, this report is the first on the developmental process of conidiogenesis by powdery mildew on host leaves as revealed with the digital microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.