In general, mycoviruses are transmitted through hyphal anastomosis between vegetatively compatible strains of the same fungi, and their entire intracellular life cycle within host fungi limits transmission to separate species and even to incompatible strains belonging to the same species. Based on field observations of the white root rot fungus, Rosellinia necatrix, we found two interesting phenomena concerning mycovirus epidemiology. Specifically, apple trees in an orchard were inoculated with one or two R. necatrix strains that belonged to different mycelial compatibility groups (MCGs), strains W563 (virus-free, MCG139) and NW10 (carrying a mycovirus-like double-stranded (ds) RNA element (N10), MCG442). Forty-two sub-isolates of R. necatrix, which were retrieved 2-3 years later, were all genetically identical to W563 or NW10: however, 22 of the sub-isolates contained novel dsRNAs. Six novel dsRNAs (S1-S6) were isolated: S1 was a new victorivirus; S2, S3, and S4 were new partitiviruses; and S5 and S6 were novel viruses that could not be assigned to any known mycovirus family. N10 dsRNA was detected in three W563 sub-isolates. These findings indicated that novel mycoviruses, from an unknown source, were infecting strains W563 and NW10 of R. necatrix in the soil, and that N10 dsRNA was being transmitted between incompatible strains, NW10 to W563.
Two major volatiles produced by the mycelia and fruiting bodies of Tricholoma matsutake (1-octen-3-ol and methyl cinnamate) repel a mycophagous collembolan, Proisotoma minuta. Aggregation of the collembolans on their diet was significantly inhibited by exposure to 1 ppm methyl cinnamate or 10 to 100 ppm 1-octen-3-ol. The aggregation activity decreased dose-dependently upon exposure to 1-octen-3-ol at concentrations higher than 0.01 ppm. Aggregation in the presence of methyl cinnamate exhibited three phases: no significant effect at concentrations ranging from 0.001 to 0.1 ppm, significant inhibition from 1 to 100 ppm, and strong inhibition at 1,000 ppm. These results may explain why certain collembolan species do not prefer T. matsutake fruiting bodies.
A colony-print immunoassay (CPIA) using an anti-dsRNA antibody was developed to visualize the distribution of four unrelated mycoviruses with dsRNA genomes, a partitivirus (RnPV1), mycoreovirus (RnMyRV3), megabirnavirus (RnMBV1), and an unidentified virus (RnQV1), in mycelia of the white root rot fungus, Rosellinia necatrix. CPIA revealed different distribution patterns within single colonies for each virus. Both RnPV1 and RnMBV1 were distributed throughout single colonies, RnMyRV3 was absent from some colony sectors, and RnQV1 exhibited varied accumulation levels between sectors. RnMyRV3 and RnQV1 were transmitted to the recipient virus-free colonies of virus-infected and virus-free colony pairs more slowly than were RnPV1 or RnMBV1. The presence of RnMyRV3 in recipient colonies restricted horizontal transmission of RnPV1 and RnMBV1. These results imply that one or more mechanisms are present in host-virus and virus-virus interactions that restrict the spread of viruses within and between colonies.
Fipronil is one of the most effective insecticides to control the invasive ant Linepithema humile, but its effectiveness has been assessed without considering the genetic differences among L. humile supercolonies. We hypothesized that the susceptibility of the ant to fipronil might differ among supercolonies. If so, dosage and concentration of fipronil may need to be adjusted for effective eradication of each supercolony. The relative sensitivities of four L. humile supercolonies established in Hyogo (Japan) to fipronil baits were examined based on their acute toxicity (48-h LC(50)). Toxicities of fipronil to seven ground arthropods, including four native ant species, one native isopoda, and two cockroaches were also determined and compared to that of L. humile supercolonies using species sensitivity distributions. Marked differences in susceptibility of fipronil were apparent among the supercolonies (P < 0.008), with the 'Japanese main supercolony' (271 μg L(-1)) being five to ten times more sensitive to fipronil than other colonies (1183-2782 μg L(-1)). Toxicities to non-target species (330-2327 μg L(-1)) were in the same range as that of L. humile, and SSDs between the two species groups were not significantly different (t = -1.389, P = 0.180), suggesting that fipronil's insecticidal activity is practically the same for L. humile as for non-target arthropods. Therefore, if the invasive ant is to be controlled using fipronil, this would also affect the local arthropod biodiversity. Only the 'Japanese main supercolony' can be controlled with appropriate bait dosages of fipronil that would have little impact on the other species.
On the gill surfaces of agaric fruit bodies fed on by Collembola, the hymenium layer was consumed and many fecal pellets containing many basidiospores were observed. The hymenial area consumed by a collembolan (=Hypo-gatsrura denisana) varied from 1% to 92%, correlating with the density of collembolans on each fruit body among 11 agaric species. In Lactarius quietus, the hymenial area consumed by collembolans varied from 30% to 69% during the 5 days during which sampling took place. A weak correlation was found between the ratio of the hymenial area and the density of collembolans on the fruit bodies, and this fact suggested that other factors influenced the ratio of the hymenial area consumed by collembolans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.