Abstract-This paper presents a method to construct composite right/left-handed transmission line using coupled lines. A general procedure to design a composite right/left-handed unit cell is presented. The procedure was used on a specific coupled line configuration, which is the coupled microstrip lines with slotted ground. It is shown that by proper design of the slotted ground, the coupling between the two microstrip lines can be increased dramatically keeping practical dimensions for the coupled line width and spacing. Moreover, with accurate slotted ground design, equal even and odd electrical lengths can be achieved. The performance of this composite right/left-handed line, which is characterized by backward waves with phase advance, is demonstrated by both simulated and measured results and they show good agreement. The realized composite right/left-handed transmission line has a broad bandwidth and small size.
Abstract-Results of theoretical and experimental studies of a GW-class, large diameter microwave oscillator are presented. The device consists of a large cross-section (overmoded), slow-wave structure with a unique profile of wall radius specifically designed to support surface waves and to provide a strong beam-wave coupling at moderate voltage (500 kV), an internal adjustable microwave reflector, a coaxial microwave extraction section, and a coaxial magnetically insulated field emission electron gun. In preliminary experiments carried out at 8.3 GHz, the power level exceeding 0.5 GW and efficiency of 15% have been measured calorimetrically.Index Terms-High-power microwave (HPM), overmoded, surface-wave oscillator.
Results of theoretical and experimental studies of a GW-class, large diameter microwave oscillator are presented. The device consists of a large cross-section (overmoded), slow-wave structure with a unique profile of wall radius specifically designed to support surface waves and to provide a strong beam-wave coupling at moderate voltage (500 kV), an internal adjustable microwave reflector, a coaxial microwave extraction section, and a coaxial magnetically insulated field emission electron gun. In preliminary experiments carried out at 8.3 GHz, the power level exceeding 0.5 GW and efficiency of 15% have been measured calorimetrically.
In this article, a novel derivative-free (DF) surrogate-based trust region optimization approach is proposed. In the proposed approach, quadratic surrogate models are constructed and successively updated. The generated surrogate model is then optimized instead of the underlined objective function over trust regions. Truncated conjugate gradients are employed to find the optimal point within each trust region. The approach constructs the initial quadratic surrogate model using few data points of order O(n), where n is the number of design variables. The proposed approach adopts weighted least squares fitting for updating the surrogate model instead of interpolation which is commonly used in DF optimization. This makes the approach more suitable for stochastic optimization and for functions subject to numerical error. The weights are assigned to give more emphasis to points close to the current center point. The accuracy and efficiency of the proposed approach are demonstrated by applying it to a set of classical bench-mark test problems. It is also employed to find the optimal design of RF cavity linear accelerator with a comparison analysis with a recent optimization technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.