Complete genome sequences of H5N1 viruses derived from a domestic cat "A/Cat/Thailand/KU-02/04" and dog "A/Dog/Thailand/KU-08/04" were comprehensively analyzed and compared with H5N1 isolates obtained during the 2004 and 2005 outbreaks. Phylogenetic analysis of both cat and dog viruses revealed that they are closely related to the H5N1 viruses recovered from avian influenza outbreaks of the same period. Genetic analysis of 8 viral gene segments showed some evidence of virulence in mammalian species. In summary, the H5N1 viruses that infected a domestic cat and dog are highly pathogenic avian influenza viruses that are virulent in mammalian species, potentially indicating transmission of H5N1 viruses from domestic animals to humans.
Five erythrocyte species (horse, goose, chicken, guinea pig, and human) were used to agglutinate avian influenza H5N1 viruses by hemagglutination assay and to detect specific antibody by hemagglutination inhibition test. We found that goose erythrocytes confer a greater advantage over other erythrocyte species in both assays.
The highly pathogenic avian influenza virus H5N1 is known to induce high level of tumor necrosis factor alpha (TNF-alpha) from primary macrophages. However, it is still unclear whether current H5N1 strains also induce high TNF-alpha production, as most of the data were derived from extinct clade 0 H5N1 strain. Here, we show that current clade 1 and 2 H5N1 strains induce variable levels of TNF-alpha that are not necessarily higher than those induced by seasonal influenza viruses. The result suggests that hyper-induction of TNF-alpha in human macrophages is not always associated with a highly pathogenic phenotype. We further tested the contribution of the NS gene segment from H5N1 isolates to TNF-alpha induction by using reverse genetics. While NS conferred some variation in TNF-alpha induction when incorporated into an H1N1 virus genetic background, it did not affect TNF-alpha induction in an H5N1 virus genetic background, suggesting that other viral genes are involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.