Memristor‐based electronic memory have recently started commercialization, although its market size is small (~0.5%). Multiple studies claim their potential for hardware implementation of artificial neural networks, advanced data encryption, and high‐frequency switches for 5G/6G communication. Application aside, the performance and reliability of memristors need to be improved to increase their market size and fit technology standards. Multiple groups propose novel nano‐materials beyond phase‐change, metal‐oxides, and magnetic materials as resistive switching medium (e.g., two‐dimensional, nanowires, perovskites). However, most studies use characterization setups that are blind to critical phenomena in understanding charge transport across the devices. Here an advanced setup with high temporal resolution is used to analyze current noise, dielectric breakdown growth, and ambipolar resistive switching in memristors based on multilayer hexagonal boron nitride (h‐BN), one of the most promising novel nano‐materials for memristive applications. The random telegraph noise in pristine memristors and its evolution as the devices degrade, covering ~7 orders of magnitude in current with consistent observation, is studied. Additionally, an ambipolar switching regime with very low resistance down to 50Ω and its connection with a telegraph behavior with high/low current ratios >100, linked to a thermally‐driven disruption of a metallic nanofilament, is shown.
The development of the internet-of-things requires cheap, light, small and reliable true random number generator (TRNG) circuits to encrypt the data — generated by objects or humans — before transmitting...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.