The purpose of the present paper is to document an initial attempt to quantify the influence of warming temperatures on the intensity and distribution of dengue transmission throughout the world using an expression of vectorial capacity modified to reflect the role of temperature on development and survival of the vector and virus. We rearranged the traditional vectorial capacity expression (the mean number of potentially infective contacts made by a mosquito population per infectious person per unit time) to develop an equation for the critical density threshold, an estimate of the number of adult female vectors required to just maintain the virus in a susceptible human population. In this expression, temperature influences adult survival, the lengths of the gonotrophic cycle and the extrinsic incubation period of the virus in the vector, and vector size, a factor that indirectly influences the biting rate. Before making projections for warming scenarios of current climate plus 2 or 4 degrees C, we validate our technique by successfully comparing model projections and the observed spatial, temporal, and altitudinal distribution of dengue using current climate in five cities that are endemic or have had epidemics in the past. Our results indicate that the current warming projection of the International Council of Scientific Unions and the Intergovernmental Panel on Climate Change of 2 degrees C by the end of the next century can be expected to result in a potential increase in the latitudinal and altitudinal range of dengue; the potential duration of the transmission season will also increase in temperate locations as well. We discuss how an increase in temperature-related transmission intensity can be expected to lower the average ages of primary and secondary infections and thereby significantly increase the proportion of secondary infections occurring among infants and adolescents, the ages especially susceptible to dengue hemorrhagic fever and shock syndrome.
The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due to expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. Images p458-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.
Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases.ImagesFigure 1Figure 2Figure 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.