Calcium silicate-based cements have diverse applications in endodontics. This study aimed to evaluate the antibiofilm action, biocompatibility, morphological structure, chemical composition and radiopacity of Five Mineral Oxides (5MO), Mineral Trioxide Aggregate Repair High Plasticity (MTA Repair HP), and Mineral Trioxide Aggregate (MTA) cements. MTT analysis was used to test the antibiofilm action of these cements against five anaerobic microorganisms, and test their biocompatibility with mouse macrophage (RAW 264.7) and osteoblasts (MG-63) cultures. Their morphological structure and chemical composition were evaluated by scanning electron microscopy (SEM) coupled to energy dispersion X-ray spectroscopy (EDX), and the phase analysis was performed by X-ray diffraction (XRD). Conventional radiography was used to assess the radiopacity of the cements. 5MO, MTA Repair HP and MTA were effective against Porphyromonas gingivalis, Parvimonas micra, Fusobacterium nucleatum and Prevotella intermedia, they were biocompatible with macrophages and osteoblasts after 5 min of contact, and they had adequate radiopacity to be used clinically. Bismuth oxide (Bi2O3) is used as a radiopacifier in MTA and 5MO, and calcium tungstate, in MTA Repair HP. Titanium dioxide (TiO2) (ANATASE) is responsible for the antimicrobial action and biocompatibility of 5MO.
The development of nanoscale biomaterials associated with polymers has been growing over the years, due to their important structural characteristics for applications in biological systems. The present study aimed to produce and test polymeric scaffolds composed of polylactic acid (PLA) fibers associated with a 58S bioglass doped with therapeutic ions for use in tissue engineering. Three 58S Bioglass was obtained by the sol-gel route, pure and doped with 5% strontium and cobalt ions. Solutions of 7% PLA was used as control and added the three different bioglass, 4% of 58S bioglass (PLA-BG), 4% bioglass-doped strontium (PLA-BGSr) and 4% bioglass-doped cobalt (PLA-BGCo). Scaffolds were produced through electrospinning process, and was characterized chemical and morphologically. The in vitro tests were performed using mesenchymal cells cultures from femurs of nine rats, grown in osteogenic supplemented total culture medium. After osteoblastic differentiation induction cell viability, alkaline phosphatase activity, total protein content quantification, and visualization of mineralization nodule tests were performed. Analysis of normal distribution used the Shapiro-Wilk test (nanofibers diameter and biological assay). Data were compared using the Kruskal-Wallis nonparametric test (p = 0.05). The bioglasses produced proved to be free of nitrate, chlorinated and nano-sized, with effective incorporation of therapeutic ions in their structure. All materials showed cell viability (>70%), total protein production, and alkaline phosphatase activity. It was possible to develop polylactic acid scaffolds associated with 58S bioglass doped with therapeutic ions without cytotoxicity. Scaffolds characteristics appear to sustain its application in bone tissue engineering.
The objective was to synthesize and characterize fine polycaprolactone (PCL) fibers associated with a new 58S bioglass obtained by the precipitated sol-gel route, produced by the electrospinning process in order to incorporate therapeutic ions (Mg and Li). In PCL/acetone solutions were added 7% pure bioglass, bioglass doped with Mg(NO 3 ) 2 and Li 2 CO 3 and were subjected to electrospinning process. The fibers obtained were characterized morphologically, chemically and biologically. The results
Impact of photoinitiator quality on chemical-mechanical properties of dental adhesives under different light intensitiesImpacto da qualidade de fotoiniciadores nas propriedades químico mecânicas de adesivos dentais sob diferentes intensidades de luz
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.