Scaffold‐based tissue engineering is a promising strategy to address the rapidly growing demand for bone implants, but developing scaffolds with bone extracellular matrix‐like structures, suitable mechanical properties, and multiple biological activities remains a huge challenge. Here, it is aimed to develop a wood‐derived composite scaffold with an anisotropic porous structure, high elasticity, and good antibacterial, osteogenic, and angiogenic activities. First, natural wood is treated with an alkaline solution to obtain a wood‐derived scaffold with an oriented cellulose skeleton and high elasticity, which can not only simulate collagen fiber skeleton in bone tissue but also greatly improve the convenience of clinical implantation. Subsequently, chitosan quaternary ammonium salt (CQS) and dimethyloxalylglycine (DMOG) are further modified on the wood‐derived elastic scaffold through a polydopamine layer. Among them, CQS endows the scaffold with good antibacterial activity, while DMOG significantly improves the scaffold's osteogenic and angiogenic activities. Interestingly, the mechanical characteristics of the scaffolds and the modified DMOG can synergistically enhance the expression of yes‐associated protein/transcriptional co‐activator with PDZ binding motif signaling pathway, thereby effectively promoting osteogenic differentiation. Therefore, this wood‐derived composite scaffold is expected to have potential application in the treatment of bone defects.
Current artificial periostea mainly focus on osteogenic activity but overlook structural and mechanical anisotropy, as well as the importance of antibacterial and anti-inflammatory properties. Here, inspired by the anisotropic structure of wood, the delignified wood (named white wood, WW) with a porous and highly oriented cellulose fiber skeleton was obtained, which was further filled with polyvinyl alcohol (PVA) hydrogel loaded with curcumin (Cur) and phytic acid (PA). The prepared wood-derived hydrogel composite membranes can not only exhibit an obvious anisotropic structure and good mechanical properties but also sustainably release loaded drugs to obtain long-term biological activities. Creatively, PA can effectively improve the bioavailability of Cur; more importantly, Cur and PA play an obvious synergistic effect in antibacterial, anti-inflammatory, and osteogenic activities. Compared with the woodderived hydrogel composite membranes without drug loading, as well as loaded with Cur or PA only, these loaded with Cur and PA are significantly more conducive to inhibiting the growth of bacteria and inflammatory response and facilitating the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells. This kind of anisotropic woodderived hydrogel composite membrane with fantastic antibacterial, anti-inflammatory, and osteogenic activities is expected to be ideal artificial periostea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.