Magnetic holes (MHs), with a scale much greater than ρi (proton gyroradius), have been widely reported in various regions of space plasmas. On the other hand, kinetic‐size magnetic holes (KSMHs), previously called small‐size magnetic holes, with a scale of the order of magnitude of or less than ρi have only been reported in the Earth's magnetospheric plasma sheet. In this study, we report such KSMHs in the magnetosheath whereby we use measurements from the Magnetospheric Multiscale mission, which provides three‐dimensional (3‐D) particle distribution measurements with a resolution much higher than previous missions. The MHs have been observed in a scale of 10–20 ρe (electron gyroradii) and lasted 0.1–0.3 s. Distinctive electron dynamics features are observed, while no substantial deviations in ion data are seen. It is found that at the 90° pitch angle, the flux of electrons with energy 34–66 eV decreased, while for electrons of energy 109–1024 eV increased inside the MHs. We also find the electron flow vortex perpendicular to the magnetic field, a feature self‐consistent with the magnetic depression. Moreover, the calculated current density is mainly contributed by the electron diamagnetic drift, and the electron vortex flow is the diamagnetic drift flow. The electron magnetohydrodynamics soliton is considered as a possible generation mechanism for the KSMHs with the scale size of 10–20 ρe.
Abstract. We report observations of a sequence of quiettime Earthward bursty bulk flows (BBFs) measured by the Cluster spacecraft in the near-tail plasma sheet (XGSM ∼ −12 to −14 R E ) in the evening sector, and by simultaneous highresolution measurements in the northern conjugate ionosphere by the EISCAT radars, a MIRACLE all-sky camera and magnetometers, as well as a meridian-scanning photometer (MSP) in the Scandinavian sector on 17 October 2005.The BBFs at Cluster show signatures that are consistent with the plasma "bubble" model Wolf, 1993, 1999), e.g. deflection and compression of the ambient plasma in front of the Earthward moving bubble, magnetic signatures of a flow shear region, and the proper flows inside the bubble. In addition, clear signatures of tailward return flows around the edges of the bubble can be identified. The duskside return flows are associated with significant decrease in plasma density, giving support to the recent suggestion by Walsh et al. (2009) of formation of a depleted wake. However, the same feature is not seen for the dawnside return flows, but rather an increase in density.In the ionosphere, EISCAT and optical measurements show that each of the studied BBFs is associated with an auroral streamer that starts from the vicinity of the polar cap boundary, intrudes equatorward, brakes at 68-70 • aacgm MLAT and drifts westward along the proton oval. Within the streamer itself and poleward of it, the ionospheric plasma flow has an equatorward component, which is the ionospheric manifestation of the Earthward BBF channel. A sharp velocity shear appears at the equatorward edge of a streamer. We suggest that each BBF creates a local velocity shear in the ionosphere, in which the plasma flow poleward of and inside the streamer is in the direction of the Correspondence to: T. Pitkänen (timo.pitkanen@oulu.fi) streamer and southeastward. A northwestward return flow is located on the equatorward side. The return flow is associated with decreased plasma densities both in the ionosphere and in the magnetosphere as measured by EISCAT and Cluster, respectively. In summary, we present the first simultaneous high-resolution observations of BBF return flows both in the plasma sheet and in the ionosphere, and those are in accordance with the bubble model. The results apply for the duskside return flows, but the manifestation of dawnside return flows in the ionosphere requires further studies.Finally, EISCAT measurements indicate increased nightside reconnection rate during the ∼35-min period of BBFs. We suggest that the observed temporal event of IMF rotation to a more southward direction produces enhanced open flux transport to the nightside magnetotail, and consequently, the nightside reconnection rate is increased.
Cluster magnetotail data together with ACE solar wind data from 2001 to 2009 are used to investigate the dependence of the azimuthal flow direction of earthward magnetotail fast flows on the interplanetary magnetic field (IMF). We find an indication that fast flows have favored azimuthal directions that have dependence on the IMF. Our results suggest that for positive IMF By, the favored azimuthal direction of the fast flows is dawnward in the northern plasma sheet and duskward in the southern plasma sheet. For negative IMF By, an opposite situation takes place, the favored azimuthal flow directions are then duskward and dawnward in the northern and southern plasma sheet, respectively. As a possible explanation for the results, it is suggested that the untwisting reconnected magnetic field lines may direct the fast flows in the magnetotail, the field line twist itself being dependent on the IMF.
The primary sources of energetic electron precipitation (EEP) which affect altitudes <100 km (>30 keV) are expected to be from the radiation belts and during substorms. EEP from the radiation belts should be restricted to locations between L = 1.5 and 8, while substorm‐produced EEP is expected to range from L = 4 to 9.5 during quiet geomagnetic conditions. Therefore, one would not expect any significant D region impact due to electron precipitation at geomagnetic latitudes beyond about L = 10. In this study we report on large unexpectedly high‐latitude D region ionization enhancements, detected by an incoherent scatter radar at L ≈ 16, which appear to be caused by electron precipitation from substorms. We go on to reexamine the latitudinal limits of substorm‐produced EEP using data from multiple low‐Earth orbiting spacecraft, and demonstrate that the precipitation stretches many hundreds of kilometers poleward of the previously suggested limits. We find that a typical substorm will produce significant EEP over the International Geomagnetic Reference Field L shell range L = 4.6 ± 0.2–14.5 ± 1.2, peaking at L = 6–7. However, there is significant variability from event to event; in contrast to the median case, the strongest 25% of substorms have significant EEP in the range spanning L = 4.1 ± 0.1–20.7 ± 2.2, while the weakest 25% of substorms have significant EEP in the range spanning L = 5.5 ± 0.1–10.1 ± 0.7. We also examine the occurrence probability of very large substorms, focusing on those events which appear to be able to disable geostationary satellites when they are located near midnight magnetic local time. On average, these large substorms occur approximately one to six times per year, a significant rate, given the potential impact on satellites.
Abstract. In this paper we describe a new method to be used for the polar cap boundary (PCB) determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR) field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (T e ) caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap T e height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission) boundary from Polar UVI.The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6-7 • in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL) model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2-10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications inCorrespondence to: A. T. Aikio (anita.aikio@oulu.fi) the westward electrojet with high latitudes affected first and lower latitudes later. We suggest that reconnection bursts energize plasma and produce enhanced flows toward the Earth. While drifting earthward, part of the plasma population precipitates to the ionosphere producing latitude-dispersed enhancements in the WEJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.