While power-gating is a promising technique to mitigate the increasing static power of a chip, a fundamental requirement is for the idle periods to be sufficiently long to compensate for the power-gating and performance overhead. On-chip routers are potentially good targets for power optimizations, but few works have explored effective ways of power-gating them due to the intrinsic dependence between the node and router -any packet (sent, received or forwarded) must wakeup the router before being transferred, thus breaking the potentially long idle period into fragmented intervals. Simulation shows that directly applying conventional power-gating techniques would cause frequent state-transitions and significant energy and performance overhead. In this paper, we propose NoRD (Node-Router Decoupling), a novel power-aware on-chip network approach that provides for power-gating bypass to decouple the node's ability for transferring packets from the powered-on/off status of the associated router, thereby maximizing the length of router idle periods. Full system evaluation using PARSEC benchmarks shows that the proposed approach can substantially reduce the number of state-transitions, completely hide wakeup latency from the critical path of packet transport and eliminate node-network disconnection problems. Compared to an optimized conventional power-gating technique applied to on-chip routers, NoRD can further reduce the router static energy by 29.9% and improve the average packet latency by 26.3%, with only 3% additional area overhead.
Microarchitectural redundancy has been proposed as a means of improving chip lifetime reliability. It is typically used in a reactive way, allowing chips to maintain operability in the presence of failures by detecting and isolating, correcting, and/or replacing components on a first-come, first-served basis only after they become faulty. In this paper, we explore an alternative, more preferred method of exploiting microarchitectural redundancy to enhance chip lifetime reliability. In our proposed approach, redundancy is used proactively to allow non-faulty microarchitecture components to be temporarily deactivated, on a rotating basis, to suspend and/or recover from certain wearout effects. This approach improves chip lifetime reliability by warding off the onset of wearout failures as opposed to reacting to them posteriorly. Applied to on-chip cache SRAM for combating NBTI-induced wearout failure, our proactive wearout recovery approach increases lifetime reliability (measured in mean-time-to-failure) of the cache by about a factor of seven relative to no use of microarchitectural redundancy and a factor of five relative to conventional reactive use of redundancy having similar area overhead.
Network-based parallel computing systems often require the ability to reconfigure the routing algorithm to reflect changes in network topology if and when voluntary or involuntary changes occur. The process of reconfiguring a network's routing capabilities may be very inefficient and/or deadlock-prone if not handled properly. In this paper, we propose efficient and deadlock-free dynamic reconfiguration schemes that are applicable to routing algorithms and networks which use wormhole, virtual cut-through, or store-andforward switching, combined with hard link-level flow control. One requirement is that the network architecture use virtual channels or duplicate physical channels for deadlock-handling as well as performance purposes. The proposed schemes do not impede the injection, transmission, or delivery of user packets during the reconfiguration process. Instead, they provide uninterrupted service, increased availability/reliability, and improved overall quality-of-service support as compared to traditional techniques based on static reconfiguration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.