Corrosion is a common form of durability degradation of steel bridges. Corrosion morphology affects stress distribution under cyclic loads and causes strain concentrations in pits, thus affecting the mechanical properties of steel structures, including ultra-low cycle fatigue (ULCF). To precisely simulate corrosion morphology and investigate the ULCF failure mechanism of corroded steel piers, a sculpting method was applied to mesh units using three-dimensional surface morphology data of corroded steel specimens. Moreover, the ULCF crack-initiation life was numerically predicted using the finite element model based on the cyclic void growth model (CVGM). The cumulative equivalent plastic strain, cyclic void growth index, and critical void growth index of corroded steel piers with different corroded morphologies were compared. Results reveal that, regardless of whether the pier is corroded, fatigue cracks tend to initiate at the weld toe at corners when exposed to cyclic loads under an oblique direction at the pier top. Additionally, the ULCF crack-initiation life in a corroded pier is less than that in an uncorroded pier, and it is significantly affected by a reduction in the pier wall thickness. Corrosion pits affect the position of ULCF crack initiation in a steel pier and cracks tend to initiate at the bottom of pits with large depth-to-diameter ratios. In the case of minor corrosion, the corrosion morphology affects the seismic performance of piers to a small extent.
We have investigated a novel hybrid nanocomposite thermal interface material (TIM) that consists of silver nanoparticles (AgNPs), silver nanoflakes (AgNFs), and copper microparticles (CuMPs). Continuous metallic network form while AgNPs and AgNFs fuse to join bigger CuMPs upon hot compression, resulting in superior thermal and mechanical performances. The assembly temperature is as low as 125 °C due to the size effect of silver nanoparticulates. The thermal conductivity, k, of the hybrid nanocomposite TIMs is found to be in the range of 15–140 W/mK, exceeding best-performing commercial thermal greases, while comparable to high-end solder TIMs. The dependence of k on the solid packing density and the volume fraction of voids is discussed through comparing to model predictions.
Increasing experimental evidence shows that the classical J2 plasticity theory may not fully describe the plastic response of many materials, including some metallic alloys. In this paper, the effect of stress state on plasticity and the general forms of the yield function and flow potential for isotropic materials are assumed to be functions of the first invariant of the stress tensor (I1) and the second and third invariants of the deviatoric stress tensor (J2 and J3). A 5083 aluminum alloy, Nitronic 40 (a stainless steel), and Zircaloy-4 (a zirconium alloy) were tested under tension, compression, torsion, combined torsion–tension and combined torsion–compression at room temperature to demonstrate the applicability of a proposed I1-J2-J3 dependent model. The I1-J2-J3 dependent plasticity model was implemented in ABAQUS via a user defined subroutine. The model parameters were determined and validated by comparing the numerically predicted and experimentally measured load versus displacement and/or torque versus twist angle curves. The results showed that the proposed model incorporating the I1-J2-J3 dependence produced output that matched experimental data more closely than the classical J2 plasticity theory for the loading conditions and materials tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.