Indonesia is amongst agricultural countries whose majority of the population consume rice as their staple food. Rice rice production tends to increase year by year followed by the increasing of their byproducts such as rice husks. The majority of rice husk waste has been generally thrown away by burning on site which cause pollution and may negatively impact on the environmental sustainability. In fact, rice husk waste contains of about 20% silica which potentially be used as emulsion stabilizers. Biosilica could stabilize the interface between water and oil due to their hydrophilicity and hydrophobicity characteristics in nature. However, their wettability was greatly influenced by pH. In this experiment, the effect of pH of the outer continuous phase (W2) was investigated. The primary emulsion (W1/O) was prepared by mixing a 40% water phase containing gelatin 3% w/w relative to the aqueous phase and Tween-20 of 1.1% w/w relative to the primary emulsion with the remaining oil phase for 5 minutes. The primary emulsions were then dispersed into the aqueous phase (W2) of various pH (2; 3; and 5.7) by using a mixture of Tween-20 and biosilica as emulsifiers. The result showed that the most stable double emulsion was obtained upon the acidic pH of 2. There was no differences between the stability of double emulsion prepared at pH 2 and that of pH 3 after 7 days. However those prepared without pH adjustment (5.7) tended to be instable in the long-term. This implied that acidic pH would increase the packing density of biosilica in the interfaces thus enhancing the barrier properties of the droplets against coalescences. A stable food grade double emulsion would be very beneficial to develop low-fat emulsion products in various food applications. Furthermore, the inner aqueous phase could be used as a vehicle to encapsulate bio-active agents such as nutrients or antioxidants for the advancement of developments of functional food products.
Rice Straw is one of the most important materials that has been used for pulp and paper production due to its abundance and cost-effectiveness. However, the pulping and papermaking characteristics of the mixture of rice straw and used paper have rarely been investigated. In this experiment, delignified rice straw was mixed with used paper in order to make recycle papers with acceptable properties. Soda pulping process was carried out to remove out of lignin. The delignification was designed to measure the effects in terms of sodium hydroxide concentration and temperature, on the cellulose and lignin content of rice straw, and its tensile strength and water absorption. The mass ratio of used paper and rice straw was varied and its physical properties was observed and compared to paper from natural rice straw. The delignification was conducted using NaOH concentrations (4-10% w/w) and temperatures (60-90°C) for 1 hour. The ratio of rice straw to used paper was varied (1:1-1:9). An optimum condition was obtained from rice straw delignification at NaOH concentration of 8% and temperature of 90°C. The results of the optimum condition obtained the highest amount of cellulose content and tensile strength while having the lowest amount of lignin content and water absorption.
Wood fiber derived cellulose has been mainly used as the raw material in the papermaking. However, currently the paper production capacity is greater than the availability of wood. To overcome this problem, there have been many attempts to use non-wood fibers as substitutes for papermaking such as the fibrous materials derived from agriculture wastes. In this research, the paper was made from sugarcane bagasse which was previously delignified using soda process. The research was conducted by varying NaOH concentrations of 8-16%, delignification temperatures of 60-100 o C and times of 30-150 min. The aim of the research was to study the effect of delignification process on physical properties of sugarcane baggase soda pulping. The results showed the increase in tensile strengths as the NaOH concentrations increased. Tensile strength was increasing up to optimum temperature and time and then decreased. The water uptake results showed the opposite tendencies with those of tensile strength. The optimum condition was achieved at the NaOH concentration of 10 %, delignification temperature of 80 o C, and time of 90 min. Tensile strength and water uptake achieved at this optimum condition were 27.42 N/mm 2 and 240 g/m 2 , respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.