In the silkworm, Bombyx mori, the W chromosome plays a dominant role in female determination. However, neither proteincoding genes nor transcripts have so far been isolated from the W chromosome. Instead, a large amount of functional transposable elements and their remnants are accumulated on the W chromosome. PIWI-interacting RNAs (piRNAs) are 23-30-nt-long small RNAs that potentially act as sequence-specific guides for PIWI proteins to silence transposon activity in animal gonads. In this study, by comparing ovary-and testis-derived piRNAs, we identified numerous female-enriched piRNAs. Our data indicated that female-enriched piRNAs are derived from the W chromosome. Moreover, comparative analyses on piRNA profiles from a series of W chromosome mutant strains revealed a striking enrichment of a specific set of transposon-derived piRNAs in the putative sex-determining region. Collectively, we revealed the nature of the silkworm W chromosome as a source of piRNAs.
In the case of a new viral disease outbreak, an immediate development of virus detection kits and vaccines is required. For COVID-19, we established a rapid production procedure for SARS-CoV-2 spike protein (S protein) by using the baculovirus-silkworm expression system. The baculovirus vector-derived S proteins were successfully secreted to silkworm serum, whereas those formed insoluble structure in the larval fat body and the pupal cells. The ectodomain of S protein with the native sequence was cleaved by the host furin-protease, resulting in less recombinant protein production. The S protein modified in furin protease-target site was efficiently secreted to silkworm serum and was purified as oligomers, which showed immunoreactivity for anti-SARS-CoV-2 S2 antibody. By using the direct transfection of recombinant bacmid to silkworms, we achieved the efficient production of SARS-CoV-2 S protein as fetal bovine serum (FBS)-free system. The resultant purified S protein would be useful tools for the development of immunodetection kits, antigen for immunization for immunoglobulin production, and vaccines.
The larval integument of the silkworm, Bombyx mori, is opaque because urate granules accumulate in the epidermis. Although the biosynthetic pathway of uric acid is well studied, little is known about how uric acid accumulates as urate granules in epidermal cells. In the distinct oily (od) mutant silkworm, the larval integument is translucent because of the inability to construct urate granules. Recently, we have found that the od mutant has a genomic deletion in the B. mori homologue of the human biogenesis of lysosome-related organelles complex1, subunit 2 (BLOS2) gene (BmBLOS2). Here, we performed a molecular and functional characterization of BmBLOS2. Northern blot analysis showed that BmBLOS2 was ubiquitously expressed in various tissues. We analysed the structure of a newly isolated mutant (od(B) ) allelic to od and found a premature stop codon in the coding sequence of BmBLOS2 in this new mutation. Moreover, the translucent phenotype was rescued by the germ-line transformation of the wild-type BmBLOS2 allele into the od mutant. Our results suggest that BmBLOS2 is responsible for the od mutant phenotype and plays a crucial role in biogenesis of urate granules in the larval epidermis of the silkworm. The relationships amongst Hermansky-Pudlak syndrome (HPS) genes in mammals, granule group genes in Drosophila and translucent mutant genes in B. mori are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.