Four thousand 8-week-old SPF B6C3F1 mice (2000 of each sex) were divided into four groups, one nonirradiated (control) and three irradiated. The irradiated groups were exposed to (137)Cs gamma rays at dose rates of 21, 1.1 and 0.05 mGy day(-1) for approximately 400 days with total doses equivalent to 8000, 400 and 20 mGy, respectively. All mice were kept until natural death, and pathological examination was performed to determine the cause of death. Neoplasms accounted for >86.7% of all deaths. Compared to the nonirradiated controls, the frequency of myeloid leukemia in males, soft tissue neoplasms and malignant granulosa cell tumors in females, and hemangiosarcoma in both sexes exposed to 21 mGy day(-1) were significantly increased. The number of multiple primary neoplasms per mouse was significantly increased in mice irradiated at 21 mGy day(-1). Significant increases in body weights were observed from 32 to 60 weeks of age in males and females exposed to 1.1 mGy day(-1) and 21 mGy day(-1), respectively. Our results suggest that life shortening (Tanaka et al., Radiat. Res. 160, 376-379, 2003) in mice continuously exposed to low-dose-rate gamma rays is due to early death from a variety of neoplasms and not from increased incidence of specific neoplasms.
Late effects of continuous exposure to ionizing radiation are potential hazards to workers in radiation facilities as well as to the general public. Recently, low-dose-rate and low-dose effects have become a serious concern. Using a total of 4000 mice, we studied the late biological effects of chronic exposure to low-dose-rate radiation as assayed by life span. Two thousand male and 2000 female 8-week-old specific-pathogen-free (SPF) B6C3F1 mice were randomly divided into four groups (one nonirradiated control and three irradiated). Irradiation was carried out for approximately 400 days using (137)Cs gamma rays at dose rates of 21 mGy day(-1), 1.1 mGy day(-1) and 0.05 mGy day(-1) with total doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept under SPF conditions until they died spontaneously. Statistical analyses showed that the life spans of mice of both sexes irradiated with 21 mGy day(-1) (P < 0.0001) and of females irradiated with 1.1 mGy day(-1) (P < 0.05) were significantly shorter than those of the control group. Our results show no evidence of lengthened life span in mice continuously exposed to very low dose rates of gamma rays.
SummaryTransmission experiments of cilia-associated respiratory (CAR) bacillus were performed in mice in order to clarify the principal route of the infection, and in rabbits and guineapigs in order to examine their susceptibility. Determination of the infection was evaluated serologically by the indirect immunofluorescence assay (IFA) technique and histologically by the presence of CAR bacillus in the airways. BALBI c mice were intranasally inoculated with the SMR strain of CAR bacillus. The IFA antibody to the bacteria in these mice rose to more than 1 : 160 at 4 weeks postinoculation (PI) and the mice were utilized as transmitters for the following experiments. One out of 15 uninfected mice kept in intracage contact with infected mice became infected from 4 weeks after contact. Incidence of contact infection increased thereafter. On the other hand, there was no evidence of infection in the uninfected mice housed in the separate cages from the cage in which infected mice were housed throughout the 12-week observation period. The primary method of CAR bacillus transmission seems to be direct contact with infected mice or fomites contaminated by infected mice; airborne transmission appears to be of little importance. Rabbits and guineapigs were also intranasally inoculated with the SMR strain of CAR bacillus. IF A antibodies were positively detected by 4 weeks PI, but no CAR bacillus nor histological changes relating to the infection were observed in the airways of either species. It is suggested that rat origin CAR bacillus can transmit to Received 2 March 1988; accepted 7 July 1988 rabbits and guineapigs, and that the infection can spread to other species of rodents and rabbits.
Measuring global gene expression using cDNA or oligonucleotide microarrays is an effective approach to understanding the complex mechanisms of the effects of radiation. However, few studies have been carried out that investigate gene expression in vivo after prolonged exposure to low-dose-rate radiation. In this study, C57BL/6J mice were continuously irradiated with gamma-rays for 485 days at dose-rates of 0.032-13 microGy/min. Gene expression profiles in the kidney and testis from irradiated and unirradiated mice were analyzed, and differentially expressed genes were identified. A combination of pathway analysis and hierarchical clustering of differentially expressed genes revealed that expression of genes involved in mitochondrial oxidative phosphorylation was elevated in the kidney after irradiation at the dose-rates of 0.65 microGy/min and 13 microGy/min. Expression of cell cycle-associated genes was not profoundly modulated in the kidney, in contrast to the response to acute irradiation, suggesting a threshold in the dose-rate for modulation of the expression of cell cycle-related genes in vivo following exposure to radiation. We demonstrated that changes to the gene expression profile in the testis were largely different from those in the kidney. The Gene Ontology categories "DNA metabolism", "response to DNA damage" and "DNA replication" overlapped significantly with the clusters of genes whose expression decreased with an increase in the dose-rate to the testis. These observations provide a fundamental insight into the organ-specific responses to low-dose-rate radiation.
Changes in gene expression profiles in mouse liver induced by long-term low-dose-rate γ irradiation were examined by microarray analysis. Three groups of male C57BL/6J mice were exposed to whole-body radiation at dose rates of 17-20 mGy/day, 0.86-1.0 mGy/day or 0.042-0.050 mGy/day for 401-485 days with cumulative doses of approximately 8 Gy, 0.4 Gy or 0.02 Gy, respectively. The gene expression levels in the livers of six animals from each exposure group were compared individually with that of pooled sham-irradiated animals. Some genes revealed a large variation in expression levels among individuals within each group, and the number of genes showing common changes in individuals from each group was limited: 20 and 11 genes showed more than 1.5-fold modulation with 17-20 mGy/day and 0.86-1.0 mGy/day, respectively. Three genes showed more than 1.5-fold modulation even at the lowest dose-rate of 0.04-0.05 mGy/day. Most of these genes were down-regulated. RT-PCR analysis confirmed the expression profiles of the majority of these genes. The results indicate that a few genes are modulated in response to very low-dose-rate irradiation. The functional analysis suggests that these genes may influence many processes, including obesity and tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.