Many recommender systems collect online users' activity and infer from it users' preferences. They record user actions of various types (e.g. clicks, views), and predict unknown, possibly future, interactions between users and items, mostly using Collaborative Filtering (CF) or Sequence Mining (SM) techniques. While both techniques have their advantages, in this paper, we show that improved prediction accuracy can be achieved by hybridizing them. The proposed hybrid model uses first an SM model to augment an existing actions' data set and then uses collaborative filtering in the final prediction step. The empirical evaluation, which was conducted on a large real-world dataset, showed that the proposed hybrid model outperforms both stand-alone SM and CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.